
Practical symfony

symfony 1.3 & 1.4 | Propel

This PDF is brought to you by

License: Creative Commons Attribution-Share Alike 3.0 Unported License

Version: jobeet-1.4-propel-en-2012-09-04

Table of Contents

About the Author ... 10

About Sensio Labs ... 11

Which symfony Version? ... 12

Day 1: Starting up the Project .. 13
Introduction ... 13
This Book is different ... 13
What for Today? ... 14
Prerequisites .. 14

Third-Party Software .. 14
Command Line Interface .. 14
PHP Configuration .. 15

Symfony Installation .. 15
Initializing the Project Directory .. 15
Choosing the Symfony Version ... 16
Choosing the Symfony Installation Location .. 16
Installing Symfony .. 16

Project Setup ... 18
Project Creation ... 18
Application Creation ... 18
Directory Structure Rights ... 19

Web Server Configuration: The ugly Way ... 20
Web Server Configuration: The secure Way ... 20

Web Server Configuration .. 20
Test the New Configuration ... 21

The Environments .. 23
Subversion ... 25
Final Thoughts ... 26

Day 2: The Project ... 27
The Project Pitch ... 27
The Project User Stories .. 28

Story F1: On the homepage, the user sees the latest active jobs 28
Story F2: A user can ask for all the jobs in a given category ... 29
Story F3: A user refines the list with some keywords .. 30
Story F4: A user clicks on a job to see more detailed information 30
Story F5: A user posts a job ... 31
Story F6: A user applies to become an affiliate ... 32
Story F7: An affiliate retrieves the current active job list .. 32
Story B1: An admin configures the website ... 33
Story B2: An admin manages the jobs .. 33
Story B3: An admin manages the affiliates .. 33

Table of Contents ii

----------------- Brought to you by

Final Thoughts ... 33

Day 3: The Data Model .. 34
The Relational Model ... 34
The Schema ... 34
The Database ... 37
The ORM.. 37
The Initial Data .. 39
See it in Action in the Browser .. 41
Final Thoughts ... 43

Day 4: The Controller and the View .. 44
The MVC Architecture ... 44
The Layout ... 45
The Stylesheets, Images, and JavaScripts ... 48
The Job Homepage... 51

The Action .. 51
The Template .. 52

The Job Page Template.. 53
Slots ... 55
The Job Page Action... 56
The Request and the Response.. 58

The Request.. 58
The Response ... 59

Final Thoughts ... 60

Day 5: The Routing ... 61
URLs .. 61
Routing Configuration ... 62
Route Customizations .. 63
Requirements ... 64
Route Class .. 64
Object Route Class... 65
Routing in Actions and Templates ... 68
Collection Route Class ... 68
Route Debugging ... 70
Default Routes ... 71
Final Thoughts ... 71

Day 6: More with the Model .. 72
The Propel Criteria Object ... 72
Debugging Propel generated SQL ... 73
Object Serialization ... 74
More with Fixtures .. 74
Custom Configuration .. 75
Refactoring .. 76
Categories on the Homepage .. 77
Limit the Results .. 79
Dynamic Fixtures ... 80
Secure the Job Page... 81
Link to the Category Page ... 82
Final Thoughts ... 83

Table of Contents iii

----------------- Brought to you by

Day 7: Playing with the Category Page ... 84
The Category Route ... 84
The Category Link ... 85
Job Category Module Creation .. 87
Update the Database ... 87
Partials ... 89
List Pagination ... 90
Final Thoughts ... 93

Day 8: The Unit Tests .. 94
Tests in symfony .. 94
Unit Tests ... 94
The lime Testing Framework ... 95
Running Unit Tests .. 96
Testing slugify ... 96
Adding Tests for new Features .. 98
Adding Tests because of a Bug .. 99
Propel Unit Tests ... 102

Database Configuration .. 102
Test Data .. 103
Testing JobeetJob .. 104
Test other Propel Classes ... 105

Unit Tests Harness .. 105
Final Thoughts ... 106

Day 9: The Functional Tests ... 107
Functional Tests .. 107
The sfBrowser class .. 107
The sfTestFunctional class ... 108

The Request Tester .. 110
The Response Tester .. 110

Running Functional Tests .. 110
Test Data.. 111
Writing Functional Tests ... 111

Expired jobs are not listed .. 111
Only n jobs are listed for a category .. 112
A category has a link to the category page only if too many jobs 112
Jobs are sorted by date ... 113
Each job on the homepage is clickable .. 114

Learn by the Example .. 114
Debugging Functional Tests .. 117
Functional Tests Harness .. 117
Tests Harness .. 118
Final Thoughts ... 118

Day 10: The Forms .. 119
The Form Framework .. 119
Forms ... 119
Propel Forms ... 120

Customizing the Job Form .. 121
The Form Template .. 125
The Form Action ... 127
Protecting the Job Form with a Token ... 129

Table of Contents iv

----------------- Brought to you by

The Preview Page .. 130
Job Activation and Publication ... 132
Final Thoughts ... 134

Day 11: Testing your Forms .. 135
Submitting a Form ... 135
The Form Tester .. 137
Redirection Test ... 137
The Propel Tester .. 137
Testing for Errors .. 138
Forcing the HTTP Method of a link ... 139
Tests as a SafeGuard ... 140
Back to the Future in a Test .. 141
Forms Security .. 143

Form Serialization Magic! .. 143
Built-in Security Features .. 143
XSS and CSRF Protection... 144

Maintenance Tasks .. 145
Final Thoughts ... 146

Day 12: The Admin Generator ... 147
Backend Creation .. 147
Backend Modules ... 148
Backend Look and Feel .. 148
The symfony Cache.. 150
Backend Configuration .. 152
Title Configuration ... 152
Fields Configuration .. 153
List View Configuration ... 154

display ... 154
layout ... 154
ÒVirtualÓ columns... 155
sort ... 155
max_per_page .. 155
batch_actions .. 156
object_actions .. 158
actions ... 159
peer_method ... 160

Form Views Configuration ... 161
display ... 154
ÒVirtualÓ columns... 155
class ... 162

Filters Configuration ... 164
Actions Customization ... 165
Templates Customization .. 166
Final Configuration .. 167
Final Thoughts ... 168

Day 13: The User ... 170
User Flashes .. 170
User Attributes .. 171

getAttribute() , setAttribute() ... 172
The myUser class ... 172
sfParameterHolder .. 174

Table of Contents v

----------------- Brought to you by

Application Security .. 174
Authentication .. 174
Authorization .. 176

Plugins ... 177
Backend Security ... 178
User Testing .. 180
Final Thoughts ... 181

Day 14: Feeds .. 182
Formats .. 182
Feeds ... 183

Latest Jobs Feed... 183
Latest Jobs in a Category Feed ... 186

Final Thoughts ... 189

Day 15: Web Services .. 190
Affiliates ... 190

The Fixtures ... 190
The Job Web Service .. 191
The Action .. 193
The xml Format .. 193
The json Format .. 194
The yaml Format .. 194

Web Service Tests ... 196
The Affiliate Application Form ... 197

Routing ... 197
Bootstrapping ... 197
Templates ... 197
Actions .. 198
Tests ... 199

The Affiliate Backend ... 201
Final Thoughts ... 203

Day 16: The Mailer .. 205
Sending simple Emails ... 205
Configuration ... 206

Factories ... 206
Delivery Strategy .. 207
Mail Transport .. 208

Testing Emails ... 208
Final Thoughts ... 210

Day 17: Search .. 211
The Technology.. 211
Installing and Configuring the Zend Framework .. 212
Indexing ... 212

The save() method ... 213
Propel Transactions .. 214
delete() ... 215
Mass delete... 215

Searching ... 215
Unit Tests ... 217
Tasks.. 218
Final Thoughts ... 218

Table of Contents vi

----------------- Brought to you by

Day 18: AJAX ... 220
Installing jQuery .. 220
Including jQuery .. 220
Adding Behaviors ... 221
User Feedback ... 221
AJAX in an Action ... 223
Testing AJAX.. 224
Final Thoughts ... 224

Day 19: Internationalization and Localization ... 225
User ... 225

The User Culture .. 225
The Preferred Culture .. 226

Culture in the URL ... 226
Culture Testing .. 228
Language Switching .. 229
Internationalization ... 232

Languages, Charset, and Encoding .. 232
Templates ... 232
i18n:extract .. 234
Translations with Arguments ... 235
Forms.. 237
Propel Objects .. 237
Admin Generator .. 239
Tests ... 240

Localization .. 241
Templates ... 232
Forms (I18n) ... 241

Final Thoughts ... 242

Day 20: The Plugins .. 243
Plugins ... 243

A symfony Plugin .. 243
Private Plugins ... 243
Public Plugins ... 243
A Different Way to Organize Code ... 244

Plugin File Structure ... 244
The Jobeet Plugin... 244

The Model ... 245
The Controllers and the Views ... 246
The Tasks.. 249
The i18n Files ... 249
The Routing .. 249
The Assets .. 249
The User ... 249
The Default Structure vs. the Plugin Architecture ... 251

Using Plugins ... 252
Contributing a Plugin .. 252

Packaging a Plugin ... 252
Hosting a Plugin on the symfony Website .. 255

Final Thoughts ... 255

Day 21: The Cache ... 256
Creating a new Environment ... 256

Table of Contents vii

----------------- Brought to you by

Cache Configuration .. 258
Page Cache.. 258
Clearing the Cache .. 260
Action Cache .. 260
Partial and Component Cache ... 261
Forms in Cache .. 263
Removing the Cache .. 264
Testing the Cache .. 265
Final Thoughts ... 266

Day 22: The Deployment ... 267
Preparing the Production Server ... 267

Server Configuration .. 267
PHP Accelerator ... 268

The symfony Libraries ... 268
Embedding symfony ... 268
Upgrading symfony .. 268

Tweaking the Configuration .. 269
Database Configuration .. 269
Assets ... 269
Customizing Error Pages .. 269

Customizing the Directory Structure .. 270
The Web Root Directory ... 270
The Cache and Log Directory ... 270

Customizing symfony core Objects (aka factories) .. 271
Cookie Name .. 271
Session Storage .. 271
Session Timeout ... 271
Logging ... 272

Deploying ... 272
What to deploy? .. 272
Deploying Strategies .. 272

Final Thoughts ... 274

Day 23: Another Look at symfony ... 275
What is symfony? ... 275
The Model .. 275
The View .. 275
The Controller .. 276
Configuration ... 276
Debugging ... 276
Main symfony Objects .. 277
Security .. 277
Forms ... 277
Internationalization and Localization .. 277
Tests... 277
Plugins ... 278
Tasks.. 278
See you soon.. 279

Learning by Practicing ... 279
The community ... 279

Appendix A: License .. 281

Table of Contents viii

----------------- Brought to you by

Attribution-Share Alike 3.0 Unported License .. 281

Table of Contents ix

----------------- Brought to you by

About the Author

Fabien Potencier discovered the Web in 1994, at a time when connecting to the Internet
was still associated with the harmful strident sounds of a modem. Being a developer by
passion, he immediately started to build websites with Perl. But with the release of PHP 5, he
decided to switch focus to PHP, and created the symfony framework project in 2004 to help
his company leverage the power of PHP for its customers.

Fabien is a serial-entrepreneur, and among other companies, he created Sensio, a services
and consulting company specialized in web technologies and Internet marketing, in 1998.

Fabien is also the creator of several other Open-Source projects, a writer, a blogger, a
speaker at international conferences, and a happy father of two wonderful kids.

His Website : http://fabien.potencier.org/

On Twitter : http://www.twitter.com/fabpot

About the Author x

----------------- Brought to you by

http://www.symfony-project.org/
http://www.sensio.com/

About Sensio Labs

Sensio Labs is a services and consulting company specialized in Open-Source Web
technologies and Internet marketing.

Founded in 1998 by Fabien Potencier, Gregory Pascal, and Samuel Potencier, Sensio
benefited from the Internet growth of the late 1990s and situated itself as a major player for
building complex web applications. It survived the Internet bubble burst by applying
professional and industrial methods to a business where most players seemed to reinvent the
wheel for each project. Most of SensioÕsclients are large corporations, who hire its teams to
deal with small- to middle-scale projects with strong time-to-market and innovation
constraints.

Sensio Labs develops interactive web applications, both for dot-com and traditional
companies. Sensio Labs also provides auditing, consulting, and training on Internet
technologies and complex application deployment. It helps define the global Internet strategy
of large-scale industrial players. Sensio Labs has projects in France and abroad.

For its own needs, Sensio Labs develops the symfony framework and sponsors its deployment
as an Open-Source project. This means that symfony is built from experience and is employed
in many web applications, including those of large corporations.

Since its beginnings eleven years ago, Sensio has always based its strategy on strong
technical expertise. The company focuses on Open-Source technologies, and as for dynamic
scripting languages, Sensio offers developments in all LAMP platforms. Sensio acquired
strong experience on the best frameworks using these languages, and often develops web
applications in Django, Rails, and, of course, symfony.

Sensio Labs is always open to new business opportunities, so if you ever need help developing
a web application, learning symfony, or evaluating a symfony development, feel free to
contact us at fabien.potencier@sensio.com. The consultants, project managers, web
designers, and developers of Sensio can handle projects from A to Z.

About Sensio Labs xi

----------------- Brought to you by

Which symfony Version?

This book has been written for both symfony 1.3 and symfony 1.4. As writing a single book for
two different versions of a software is quite unusual, this section explains what the main
differences are between the two versions, and how to make the best choice for your projects.

Both the symfony 1.3 and symfony 1.4 versions have been released at about the same time (at
the end of 2009). As a matter of fact, they both have the exact same feature set . The only
difference between the two versions is how each supports backward compatibility with older
symfony versions.

Symfony 1.3 is the release youÕllwant to use if you need to upgrade a legacy project that uses
an older symfony version (1.0, 1.1, or 1.2). It has a backward compatibility layer and all the
features that have been deprecated during the 1.3 development period are still available. It
means that upgrading is easy, simple, and safe.

If you start a new project today, however, you should use symfony 1.4. This version has the
same feature set as symfony 1.3 but all the deprecated features, including the entire
compatibility layer, have been removed. This version is cleaner and also a bit faster than
symfony 1.3. Another big advantage of using symfony 1.4 is its longer support. Being a Long
Term Support release, it will be maintained by the symfony core team for three years (until
November 2012).

Of course, you can migrate your projects to symfony 1.3 and then slowly update your code to
remove the deprecated features and eventually move to symfony 1.4 in order to benefit from
the long term support. You have plenty of time to plan the move as symfony 1.3 will be
supported for a year (until November 2010).

As this book does not describe deprecated features, all examples work equally well on both
versions.

Which symfony Version? xii

----------------- Brought to you by

Day 1

Starting up the Project

Introduction
The symfony1 framework has been an Open-Source project for more than four years and has
become one of the most popular PHP frameworks thanks to its great features and great
documentation.

This book describes the creation of a web application with the symfony framework, step-by-
step from the specifications to the implementation. It is targeted at beginners who want to
learn symfony, understand how it works, and also learn about the best web development
practices.

The application to be designed could have been yet another blog engine. But we want to use
symfony on a useful project. The goal is to demonstrate that symfony can be used to develop
professional applications with style and little effort.

We will keep the content of the project secret for another day as we already have much for
now. However, letÕs give it a name: Jobeet .

Each day of this book is meant to last between one and two hours, and will be the occasion to
learn symfony by coding a real website, from start to finish. Every day, new features will be
added to the application, and weÕlltake advantage of this development to introduce you to
new symfony functionalities as well as good practices in symfony web development.

This Book is different
Remember the early days of PHP4. Ah, la Belle Epoque! PHP was one of the first languages
dedicated to the web and one of the easiest to learn.

But as web technologies evolve at a very fast pace, web developers need to keep up with the
latest best practices and tools. The best way to learn is of course by reading blogs, tutorials,
and books. We have read a lot of these, be they written for PHP, Python, Java, Ruby, or Perl,
and many of them fall short when the author starts giving snippets of codes as examples.

You are probably used to reading warnings like:

ÒFor a real application, donÕt forget to add validation and proper error handling.Ó

or

ÒSecurity is left as an exercise to the reader.Ó

or

1. http://www.symfony-project.org/

Day 1: Starting up the Project 13

----------------- Brought to you by

http://en.wikipedia.org/wiki/Belle_Époque

ÒYou will of course need to write tests.Ó

What? These things are serious business. They are perhaps the most important part of any
piece of code. And as a reader, you are left alone. Without these concerns taken into account,
the examples are much less useful. You cannot use them as a good starting point. ThatÕsbad!
Why? Because security, validation, error handling, and tests, just to name a few, take care to
code right.

In this book, you will never see statements like those as we will write tests, error handling,
validation code, and be sure we develop a secure application. ThatÕsbecause symfony is
about code, but also about best practices and how to develop professional applications for the
enterprise. We will be able to afford this luxury because symfony provides all the tools needed
to code these aspects easily without writing too much code.

Validation, error handling, security, and tests are first-class citizens in symfony, so it wonÕt
take us too long to explain. This is just one of many reasons why to use a framework for Òreal
lifeÓ projects.

All the code you will read in this book is code you could use for a real project. We encourage
you to copy and paste snippets of code or steal whole chunks.

What for Today?
We wonÕt write PHP code. But even without writing a single line of code, you will start
understanding the benefits of using a framework like symfony, just by bootstrapping a new
project.

The objective of this day is to setup the development environment and display a page of the
application in a web browser. This includes installation of symfony, creation of an application,
and web server configuration.

As this book will mostly focus on the symfony framework, we will assume that you already
have a solid knowledge of PHP 5 and Object Oriented programming.

Prerequisites
Before installing symfony, you need to check that your computer has everything installed and
configured correctly. Take the time to conscientiously read this day and follow all the steps
required to check your configuration, as it may save your day further down the road.

Third-Party Software

First of all, you need to check that your computer has a friendly working environment for web
development. At a minimum, you need a web server (Apache, for instance), a database engine
(MySQL, PostgreSQL, SQLite, or any PDO2-compatible database engine), and PHP 5.2.4 or
later.

Command Line Interface

The symfony framework comes bundled with a command line tool that automates a lot of
work for you. If you are a Unix-like OS user, you will feel right at home. If you run a Windows
system, it will also work fine, but you will just have to type a few commands at the cmd
prompt.

2. http://www.php.net/PDO

Day 1: Starting up the Project 14

----------------- Brought to you by

Listing
1-1

Listing
1-2

Listing
1-3

Listing
1-4

Unix shell commands can come in handy in a Windows environment. If you would like to
use tools like tar , gzip or grep on Windows, you can install Cygwin 3. The adventurous
may also like to try MicrosoftÕs Windows Services for Unix 4.

PHP Configuration

As PHP configurations can vary a lot from one OS to another, or even between different Linux
distributions, you need to check that your PHP configuration meets the symfony minimum
requirements.

First, ensure that you have PHP 5.2.4 at a minimum installed by using the phpinfo() built-in
function or by running php -v on the command line. Be aware that on some configurations,
you might have two different PHP versions installed: one for the command line, and another
for the web.

Then, download the symfony configuration checker script at the following URL:

http://sf-to.org/1.4/check.php

Save the script somewhere under your current web root directory. Launch the configuration
checker script from the command line:

$ php check_configuration.php

If there is a problem with your PHP configuration, the output of the command will give you
hints on what to fix and how to fix it.

You should also execute the checker from a browser and fix the issues it might discover.
ThatÕs because PHP can have a distinct php.ini configuration file for these two
environments, with different settings.

DonÕt forget to remove the file from your web root directory afterwards.

Symfony Installation

Initializing the Project Directory

Before installing symfony, you first need to create a directory that will host all the files
related to Jobeet:

$ mkdir -p /home/sfprojects/jobeet
$ cd /home/sfprojects/jobeet

Or on Windows:

c:\> mkdir c:\development\sfprojects\jobeet
c:\> cd c:\development\sfprojects\jobeet

3. http://cygwin.com/
4. http://technet.microsoft.com/en-gb/interopmigration/bb380242.aspx

Day 1: Starting up the Project 15

----------------- Brought to you by

Listing
1-5

Listing
1-6

Windows users are advised to run symfony and to setup their new project in a path which
contains no spaces. Avoid using the Documents and Settings directory, including
anywhere under My Documents .

If you create the symfony project directory under the web root directory, you wonÕtneed to
configure your web server. Of course, for production environments, we strongly advise you
to configure your web server as explained in the web server configuration section.

Choosing the Symfony Version

Now, you need to install symfony. As the symfony framework has several stable versions, you
need to choose the one you want to install by reading the installation page5 on the symfony
website.

This book assumes you want to install symfony 1.3 or symfony 1.4.

Choosing the Symfony Installation Location

You can install symfony globally on your machine, or embed it into each of your project. The
latter is the recommended one as projects will then be totally independent from each others.
Upgrading your locally installed symfony wonÕtbreak some of your projects unexpectedly. It
means you will be able to have projects on different versions of symfony, and upgrade them
one at a time as you see fit.

As a best practice, many people install the symfony framework files in the lib/ vendor
project directory. So, first, create this directory:

$ mkdir -p lib/vendor

Installing Symfony

Installing from an Archive

The easiest way to install symfony is to download the archive for the version you choose from
the symfony website. Go to the installation page for the version you have just chosen, symfony
1.46 for instance.

Under the ÒSource Download Ósection, you will find the archive in .tgz or in .zip format.
Download the archive, put it under the freshly created lib/ vendor/ directory, un-archive it,
and rename the directory to symfony :

$ cd lib/vendor
$ tar zxpf symfony-1.4.0.tgz
$ mv symfony-1.4.0 symfony
$ rm symfony-1.4.0.tgz

Under Windows, unzipping the zip file can be achieved using Windows Explorer. After you
rename the directory to symfony , there should be a directory structure similar to
c:\dev\sfprojects\jobeet\lib\vendor\symfony .

5. http://www.symfony-project.org/installation
6. http://www.symfony-project.org/installation/1_4

Day 1: Starting up the Project 16

----------------- Brought to you by

Listing
1-7

Listing
1-8

Listing
1-9

Listing
1-10

Listing
1-11

Listing
1-12

Listing
1-13

Installing from Subversion (recommended)

If you use Subversion, it is even better to use the svn:externals property to embed
symfony into your project in the lib/vendor/ directory:

$ svn pe svn:externals lib/vendor/

Importing your project in a new Subversion repository is explained at the end of this day.

If everything goes well, this command will run your favorite editor to give you the opportunity
to configure the external Subversion sources.

On Windows, you can use tools like TortoiseSVN 7 to do everything without the need to use
the console.

If you are conservative, tie your project to a specific release (a subversion tag):

symfony http://svn.symfony-project.com/tags/RELEASE_1_4_0

Whenever a new release comes out (as announced on the symfony blog8), you will need to
change the URL to the new version.

If you want to go the bleeding-edge route, use the 1.4 branch:

symfony http://svn.symfony-project.com/branches/1.4/

Using the branch makes your project benefits from the bug fixes automatically whenever you
run a svn update .

Installation Verification

Now that symfony is installed, check that everything is working by using the symfony
command line to display the symfony version (note the capital V):

$ cd ../..
$ php lib/vendor/symfony/data/bin/symfony -V

On Windows:

c:\> cd ..\..
c:\> php lib\vendor\symfony\data\bin\symfony -V

If you are curious about what this command line tool can do for you, type symfony to list
the available options and tasks:

$ php lib/vendor/symfony/data/bin/symfony

On Windows:

c:\> php lib\vendor\symfony\data\bin\symfony

7. http://tortoisesvn.net/
8. http://www.symfony-project.org/blog/

Day 1: Starting up the Project 17

----------------- Brought to you by

Listing
1-14

Listing
1-15

The symfony command line is the developerÕsbest friend. It provides a lot of utilities that
improve your productivity for day-to-day activities like cleaning the cache, generating code,
and much more.

Project Setup
In symfony, applications sharing the same data model are regrouped into projects . For
most projects, you will have two different applications: a frontend and a backend.

Project Creation

From the sfprojects/ jobeet directory, run the symfony generate:project task to
actually create the symfony project:

$ php lib/vendor/symfony/data/bin/symfony generate:project jobeet
--orm=Propel

On Windows:

c:\> php lib\vendor\symfony\data\bin\symfony generate:project jobeet
--orm=Propel

The generate:project task generates the default structure of directories and files needed
for a symfony project:

Directory Description

apps/ Hosts all project applications

cache/ The files cached by the framework

config/ The project configuration files

lib/ The project libraries and classes

log/ The framework log files

plugins/ The installed plugins

test/ The unit and functional test files

web/ The web root directory (see below)

Why does symfony generate so many files? One of the main benefits of using a full-stack
framework is to standardize your developments. Thanks to symfonyÕsdefault structure of
files and directories, any developer with some symfony knowledge can take over the
maintenance of any symfony project. In a matter of minutes, he will be able to dive into the
code, fix bugs, and add new features.

The generate:project task has also created a symfony shortcut in the project root
directory to shorten the number of characters you have to write when running a task.

So, from now on, instead of using the fully qualified path to the symfony program, you can use
the symfony shortcut.

Application Creation

Now, create the frontend application by running the generate:app task:

Day 1: Starting up the Project 18

----------------- Brought to you by

Listing
1-16

Listing
1-17

Listing
1-18

$ php symfony generate:app frontend

Because the symfony shortcut file is executable, Unix users can replace all occurrences of
Ôphp symfony Õ by Ô./symfony Õ from now on.

On Windows you can copy the Ôsymfony.bat Õfile to your project and use Ôsymfony Õ
instead of Ôphp symfony Õ:

c:\> copy lib\vendor\symfony\data\bin\symfony.bat .

Based on the application name given as an argument , the generate:app task creates the
default directory structure needed for the application under the apps/frontend/ directory:

Directory Description

config/ The application configuration files

lib/ The application libraries and classes

modules/ The application code (MVC)

templates/ The global template files

Security

By default, the generate:app task has secured our application from the two most
widespread vulnerabilities found on the web. ThatÕsright, symfony automatically takes
security measures on our behalf.

To prevent XSS attacks, output escaping has been enabled; and to prevent CSRF attacks, a
random CSRF secret has been generated.

Of course, you can tweak these settings thanks to the following options :

¥ --escaping-strategy : Enables or disables output escaping
¥ --csrf-secret : Enables session tokens in forms

If you know nothing about XSS9 or CSRF10, take the time to learn more these security
vulnerabilities.

Directory Structure Rights

Before trying to access your newly created project, you need to set the write permissions on
the cache/ and log/ directories to the appropriate levels, so that your web server can write
to them:

$ chmod 777 cache/ log/

Tips for People using a SCM Tool

symfony only ever writes in two directories of a symfony project, cache/ and log/ . The
content of these directories should be ignored by your SCM (by editing the svn:ignore
property if you use Subversion for instance).

9. http://en.wikipedia.org/wiki/Cross-site_scripting
10. http://en.wikipedia.org/wiki/CSRF

Day 1: Starting up the Project 19

----------------- Brought to you by

Listing
1-19

Web Server Configuration: The ugly Way
If you have created the project directory it somewhere under the web root directory of your
web server, you can already access the project in a web browser.

Of course, as there is no configuration, it is very fast to set up, but try to access the config/
databases.yml file in your browser to understand the bad consequences of such a lazy
attitude. If the user knows that your website is developed with symfony, he will have access
to a lot of sensitive files.

Never ever use this setup on a production server , and read the next section to learn how
to configure your web server properly.

Web Server Configuration: The secure Way
A good web practice is to put under the web root directory only the files that need to be
accessed by a web browser, like stylesheets, JavaScripts and images. By default, we
recommend to store these files under the web/ sub-directory of a symfony project.

If you have a look at this directory, you will find some sub-directories for web assets (css/
and images/) and the two front controller files. The front controllers are the only PHP files
that need to be under the web root directory. All other PHP files can be hidden from the
browser, which is a good idea as far as security is concerned.

Web Server Configuration

Now it is time to change your Apache configuration, to make the new project accessible to the
world.

Locate and open the httpd.conf configuration file and add the following configuration at
the end:

Be sure to only have this line once in your configuration
NameVirtualHost 127.0.0.1:8080

This is the configuration for your project
Listen 127.0.0.1:8080

<VirtualHost 127.0.0.1:8080>
DocumentRoot "/home/sfprojects/jobeet/web"
DirectoryIndex index.php
<Directory "/home/sfprojects/jobeet/web">

AllowOverride All
Allow from All

</Directory>

Alias /sf /home/sfprojects/jobeet/lib/vendor/symfony/data/web/sf
<Directory "/home/sfprojects/jobeet/lib/vendor/symfony/data/web/sf">

AllowOverride All
Allow from All

</Directory>
</VirtualHost>

The /sf alias gives you access to images and javascript files needed to properly display
default symfony pages and the web debug toolbar |Web Debug Toolbar.

Day 1: Starting up the Project 20

----------------- Brought to you by

Listing
1-20

Listing
1-21

Listing
1-22

Listing
1-23

Listing
1-24

On Windows, you need to replace the Alias line with something like:

Alias /sf "c:\dev\sfprojects\jobeet\lib\vendor\symfony\data\web\sf"

And /home/sfprojects/jobeet/web should be replaced with:

c:\dev\sfprojects\jobeet\web

This configuration makes Apache listen to port 8080 on your machine, so, after restarting
apache, the website will be accessible at the following URL:

http://~localhost~:8080/

You can change 8080 to any number, but favour numbers greater than 1024 as they do not
require administrator rights.

Configure a dedicated Domain Name

If you are an administrator on your machine, it is better to setup virtual hosts instead of
adding a new port each time you start a new project. Instead of choosing a port and add a
Listen statement, choose a domain name (for instance the real domain name with
.localhost added at the end) and add a ServerName statement:

This is the configuration for your project
<VirtualHost 127.0.0.1:80>

ServerName www.jobeet.com.localhost
<!-- same configuration as before -->

</VirtualHost>

The domain name www.jobeet.com.localhost used in the Apache configuration has to
be declared locally. If you run a Linux system, it has to be done in the /etc/ hosts file. If
you run Windows XP, this file is located in the C:\WINDOWS\system32\drivers\etc\
directory.

Add in the following line:

127.0.0.1 www.jobeet.com.localhost

Test the New Configuration

Restart Apache, and check that you now have access to the new application by opening a
browser and typing http://localhost:8080/ index.php/ , or
http://www.jobeet.com.localhost/ index.php/ depending on the Apache
configuration you chose in the previous section.

Day 1: Starting up the Project 21

----------------- Brought to you by

Listing
1-25

If you have the Apache mod_rewrite module installed, you can remove the index.php/
part of the URL. This is possible thanks to the rewriting rules configured in the web/
.htaccess file.

You should also try to access the application in the development environment (see the next
section for more information about environments). Type in the following URL:

http://www.jobeet.com.localhost/frontend_dev.php/

The web debug toolbar should show in the top right corner, including small icons proving that
your sf/ alias configuration is correct.

Day 1: Starting up the Project 22

----------------- Brought to you by

The setup is a little different if you want to run symfony on an IIS server in a Windows
environment. Find how to configure it in the related tutorial 11.

The Environments
If you have a look at the web/ directory, you will find two PHP files: index.php and
frontend_dev.php . These files are called front controllers ; all requests to the application
are made through them. But why do we have two front controllers for each application?

Both files point to the same application but for different environments . When you develop an
application, except if you develop directly on the production server, you need several
environments:

¥ The development environment : This is the environment used by web developers
when they work on the application to add new features, fix bugs, É

¥ The test environment : This environment is used to automatically test the
application.

¥ The staging environment : This environment is used by the customer to test the
application and report bugs or missing features.

¥ The production environment : This is the environment end users interact with.

What makes an environment unique? In the development environment for instance, the
application needs to log all the details of a request to ease debugging, but the cache system
must be disabled as all changes made to the code must be taken into account right away. So,
the development environment must be optimized for the developer. The best example is
certainly when an exception|Exception Handling occurs. To help the developer debug the
issue faster, symfony displays the exception with all the information it has about the current
request right into the browser:

11. http://www.symfony-project.com/cookbook/1_0/web_server_iis

Day 1: Starting up the Project 23

----------------- Brought to you by

Listing
1-26

But on the production environment, the cache layer must be activated and, of course, the
application must display customized error messages instead of raw exceptions. So, the
production environment must be optimized for performance and the user experience.

If you open the front controller files, you will see that their content is the same except for
the environment setting:

// web/index.php
<?php

require_once(dirname(__FILE__).'/../config/
ProjectConfiguration.class.php');

$configuration =
ProjectConfiguration::getApplicationConfiguration('frontend', 'prod',
false);
sfContext::createInstance($configuration)->dispatch();

Day 1: Starting up the Project 24

----------------- Brought to you by

Listing
1-27

Listing
1-28

Listing
1-29

Listing
1-30

Listing
1-31

The web debug toolbar is also a great example of the usage of environment. It is present on
all pages in the development environment and gives you access to a lot of information by
clicking on the different tabs: the current application configuration, the logs for the current
request, the SQL statements executed on the database engine, memory information, and time
information.

Subversion
It is a good practice to use source version control when developing a web application. Using a
source version control allows us to:

¥ work with confidence
¥ revert to a previous version if a change breaks something
¥ allow more than one person to work efficiently on the project
¥ have access to all the successive versions of the application

In this section, we will describe how to use Subversion12 with symfony. If you use another
source code control tool, it must be quite easy to adapt what we describe for Subversion.

We assume you have already access to a Subversion server and can access it via HTTP.

If you donÕthave a Subversion server at your disposal, you can create a repository for free
on Google Code13 or just type Òfree subversion repositoryÓ in Google to have a lot more
options.

First, create a repository for the jobeet project on the repository server:

$ svnadmin create /path/to/jobeet/repository

On your machine, create the basic directory structure:

$ svn mkdir -m "created default directory structure"
http://svn.example.com/jobeet/trunk
http://svn.example.com/jobeet/tags
http://svn.example.com/jobeet/branches

And checkout the empty trunk/ directory:

$ cd /home/sfprojects/jobeet
$ svn co http://svn.example.com/jobeet/trunk/ .

Then, remove the content of the cache/ and log/ directories as we donÕtwant to put them
into the repository.

$ rm -rf cache/* log/*

Now, make sure to set the write permissions on the cache and logs directories to the
appropriate levels so that your web server can write to them:

$ chmod 777 cache/ log/

Now, import all the files and directories:

12. http://subversion.tigris.org/
13. http://code.google.com/hosting/

Day 1: Starting up the Project 25

----------------- Brought to you by

Listing
1-32

Listing
1-33

Listing
1-34

Listing
1-35

Listing
1-36

Listing
1-37

$ svn add *

As we will never want to commit files located in the cache/ and log/ directories, you need
to specify an ignore list:

$ svn propedit svn:ignore cache

The default text editor configured for SVN should launch. Subversion must ignore all the
content of this directory:

*

Save and quit. YouÕre done.

Repeat the procedure for the log/ directory:

$ svn propedit svn:ignore log

And enter:

*

Finally, commit these changes to the repository:

$ svn import -m "made the initial import" .
http://svn.example.com/jobeet/trunk

Windows users can use the great TortoiseSVN 14 client to manage their subversion
repository.

Final Thoughts
Well, time is over! Even if we have not yet started talking about symfony, we have setup a
solid development environment, we have talked about web development best practices, and
we are ready to start coding.

Tomorrow, we will reveal what the application will do and talk about the requirements we
need to implement for Jobeet.

14. http://tortoisesvn.tigris.org/

Day 1: Starting up the Project 26

----------------- Brought to you by

Day 2

The Project

We have not written a single line of PHP yet, but in day 1, we setup the environment, created
an empty symfony project, and made sure we started with some good security defaults. If you
followed along, you have been looking at your screen delightedly since then, as it displays the
beautiful default symfony page for new applications.

But you want more. You want to learn all the nitty gritty details of symfony application
development. So, letÕs resume our trip to symfony development nirvana.

Now, we will take the time to describe the requirements of the Jobeet project with some basic
mockups.

The Project Pitch
Everybody is talking about the crisis nowadays. Unemployment is rising again.

I know, symfony developers are not really concerned and thatÕs why you want to learn
symfony in the first place. But it is also quite difficult to find good symfony developers.

Where can you find a symfony developer? Where can you advertise your symfony skills?

Day 2: The Project 27

----------------- Brought to you by

You need to find a good job board. Monster you say? Think again. You need a focused job
board. One where you can find the best people, the experts. One where it is easy, fast, and
fun to look for a job, or to propose one.

Search no more. Jobeet is the place. Jobeet is Open-Source job board software that only
does one thing, but does it well. It is easy to use, customize, extend, and embed into your
website. It supports multiple languages out of the box, and of course uses the latest Web 2.0
technologies to enhance user experience. It also provides feeds and an API to interact with it
programatically.

Does it already exist? As a user, you will find a lot of job boards like Jobeet on the Internet.
But try to find one which is Open-Source, and as feature-rich as what we propose here.

If you are really looking for a symfony job or want to hire a symfony developer, you can go
to the symfonians 15 website.

The Project User Stories
Before diving into the code head-first, letÕsdescribe the project a bit more. The following
sections describe the features we want to implement in the first version/ iteration of the
project with some simple stories.

The Jobeet website has four kind of users:

¥ admin : He owns the website and has the magic power
¥ user : He visits the website to look for a job
¥ poster : He visits the website to post a job
¥ affiliate : He re-publishes some jobs on his website

The project has two applications: the frontend (stories F1 to F7, below), where the users
interact with the website, and the backend (stories B1 to B3), where admins manage the
website.

The backend application is secured and requires credentials to access.

Story F1: On the homepage, the user sees the latest active jobs

When a user comes to the Jobeet website, he sees a list of active jobs. The jobs are sorted by
category and then by publication date (newer jobs first). For each job, only the location, the
position, and the company are displayed.

For each category, the list only shows the first 10 jobs and a link allows to list all the jobs for
a given category (Story F2).

On the homepage, the user can refine the job list (Story F3), or post a new job (Story F5).

15. http://symfonians.net/

Day 2: The Project 28

----------------- Brought to you by

Story F2: A user can ask for all the jobs in a given category

When a user clicks on a category name or on a ÒmorejobsÓlink on the homepage, he sees all
the jobs for this category sorted by date.

The list is paginated with 20 jobs per page.

Day 2: The Project 29

----------------- Brought to you by

Story F3: A user refines the list with some keywords

The user can enter some keywords to refine his search. Keywords can be words found in the
location, the position, the category, or the company fields.

Story F4: A user clicks on a job to see more detailed information

The user can select a job from the list to see more detailed information.

Day 2: The Project 30

----------------- Brought to you by

Story F5: A user posts a job

A user can post a job. A job is made of several pieces of information:

¥ Company
¥ Type (full-time, part-time, or freelance)
¥ Logo (optional)
¥ URL (optional)
¥ Position
¥ Location
¥ Category (the user chooses in a list of possible categories)
¥ Job description (URLs and emails are automatically linked)
¥ How to apply (URLs and emails are automatically linked)
¥ Public (whether the job can also be published on affiliate websites)
¥ Email (email of the poster)

There is no need to create an account to post a job.

The process is straightforward with only two steps: first, the user fills in the form with all the
needed information to describe the job, then he validates the information by previewing the
final job page.

Even if the user has no account, a job can be modified afterwards thanks to a specific URL
(protected by a token given to the user when the job is created).

Day 2: The Project 31

----------------- Brought to you by

Each job post is online for 30 days (this is configurable by the admin - see Story B2). A user
can come back to re-activate or extend the validity of the job for an extra 30 days but only
when the job expires in less than 5 days.

Story F6: A user applies to become an affiliate

A user needs to apply to become an affiliate and be authorized to use the Jobeet API. To
apply, he must give the following information:

¥ Name
¥ Email
¥ Website URL

The affiliate account must be activated by the admin (Story B3). Once activated, the affiliate
receives a token to use with the API via email.

When applying, the affiliate can also choose to get jobs from a sub-set of the available
categories.

Story F7: An affiliate retrieves the current active job list

An affiliate can retrieve the current job list by calling the API with his affiliate token. The list
can be returned in the XML, JSON or YAML format.

Day 2: The Project 32

----------------- Brought to you by

The list contains the public information available for a job.

The affiliate can also limit the number of jobs to be returned, and refine his query by
specifying a category.

Story B1: An admin configures the website

An admin can edit the categories available on the website.

Story B2: An admin manages the jobs

An admin can edit and remove any posted job.

Story B3: An admin manages the affiliates

The admin can create or edit affiliates. He is responsible for activating an affiliate and can
also disable one.

When the admin activates a new affiliate, the system creates a unique token to be used by the
affiliate.

Final Thoughts
As for any web development, you never start coding the first day. You need to gather the
requirements first and work on a mockup design. ThatÕs what we have done here.

Day 2: The Project 33

----------------- Brought to you by

Day 3

The Data Model

Those of you itching to open your text editor and lay down some PHP will be happy to know
today will get us into some development. We will define the Jobeet data model, use an ORM to
interact with the database, and build the first module of the application. But as symfony does
a lot of the work for us, we will have a fully functional web module without writing too much
PHP code.

The Relational Model
The user stories we saw yesterday describe the main objects of our project: jobs, affiliates,
and categories. Here is the corresponding entity relationship diagram:

In addition to the columns described in the stories, we have also added a created_at field to
some tables. Symfony recognizes such fields and sets the value to the current system time
when a record is created. ThatÕsthe same for updated_at fields: Their value is set to the
system time whenever the record is updated.

The Schema
To store the jobs, affiliates, and categories, we obviously need a relational database.

Day 3: The Data Model 34

----------------- Brought to you by

Listing
3-1

But as symfony is an Object-Oriented framework, we like to manipulate objects whenever we
can. For example, instead of writing SQL statements to retrieve records from the database,
weÕd rather prefer to use objects.

The relational database information must be mapped to an object model. This can be done
with an ORM tool and thankfully, symfony comes bundled with two of them: Propel16 and
Doctrine 17. In this tutorial, we will use Propel.

The ORM needs a description of the tables and their relationships to create the related
classes. There are two ways to create this description schema: by introspecting an existing
database or by creating it by hand.

Some tools allow you to build a database graphically (for instance FabforceÕsDbdesigner 18)
and generate directly a schema.xml (with DB Designer 4 TO Propel Schema Converter).

As the database does not exist yet and as we want to keep Jobeet database agnostic, letÕs
create the schema file by hand by editing the empty config/schema.yml file:

config/schema.yml
propel:

jobeet_category:
id: ~
name: { type: varchar(255), required: true, index: unique }

jobeet_job:
id: ~
category_id: { type: integer, foreignTable: jobeet_category,

foreignReference: id, required: true }
type: { type: varchar(255) }
company: { type: varchar(255), required: true }
logo: { type: varchar(255) }
url: { type: varchar(255) }
position: { type: varchar(255), required: true }
location: { type: varchar(255), required: true }
description: { type: longvarchar, required: true }
how_to_apply: { type: longvarchar, required: true }
token: { type: varchar(255), required: true, index: unique }
is_public: { type: boolean, required: true, default: 1 }
is_activated: { type: boolean, required: true, default: 0 }
email: { type: varchar(255), required: true }
expires_at: { type: timestamp, required: true }
created_at: ~
updated_at: ~

jobeet_affiliate:
id: ~
url: { type: varchar(255), required: true }
email: { type: varchar(255), required: true, index: unique }
token: { type: varchar(255), required: true, index: unique }
is_active: { type: boolean, required: true, default: 0 }
created_at: ~

jobeet_category_affiliate:
category_id: { type: integer, foreignTable: jobeet_category,

16. http://www.propelorm.org/
17. http://www.doctrine-project.org/
18. http://www.fabforce.net/dbdesigner4/

Day 3: The Data Model 35

----------------- Brought to you by

http://en.wikipedia.org/wiki/Object-relational_mapping
http://blog.tooleshed.com/docs/dbd2propel/transform.php

Listing
3-2

foreignReference: id, required: true, primaryKey: true,
onDelete: cascade }

affiliate_id: { type: integer, foreignTable: jobeet_affiliate,
foreignReference: id, required: true, primaryKey: true,
onDelete: cascade }

If you have decided to create the tables by writing SQL statements, you can generate the
corresponding schema.yml configuration file by running the propel:build-schema
task:

$ php symfony propel:build-schema

The above task requires that you have a configured database in databases.yml . We show
you how to configure the database in a later step. If you try and run this task now it wonÕt
work as it doesnÕt know what database to build the schema for.

The schema is the direct translation of the entity relationship diagram in the YAML format.

The YAMLFormat

According to the official YAML19 website, YAML is Òa human friendly data serialization
standard for all programming languagesÓ

Put another way, YAML is a simple language to describe data (strings, integers, dates,
arrays, and hashes).

In YAML, structure is shown through indentation, sequence items are denoted by a dash,
and key/value pairs within a map are separated by a colon. YAML also has a shorthand
syntax to describe the same structure with fewer lines, where arrays are explicitly shown
with [] and hashes with {} .

If you are not yet familiar with YAML, it is time to get started as the symfony framework
uses it extensively for its configuration files. A good starting point is the symfony YAML
component documentation 20.

There is one important thing you need to remember when editing a YAML file: indentation
must be done with one or more spaces, but never with tabulations .

The schema.yml file contains the description of all tables and their columns. Each column is
described with the following information:

¥ type : The column type (boolean , tinyint , smallint , integer , bigint ,
double , float , real , decimal , char , varchar(size) , longvarchar , date ,
time , timestamp , blob , and clob)

¥ required : Set it to true if you want the column to be required
¥ index : Set it to true if you want to create an index for the column or to unique if

you want a unique index to be created on the column.
¥ primaryKey : Define a column as the primary key for the table.
¥ foreignTable , foreignReference : Define a column to be a foreign key to

another table.

For columns set to ~, which means null in YAML (id , created_at , and updated_at),
symfony will guess the best configuration (primary key for id and timestamp for created_at
and updated_at).

19. http://yaml.org/
20. http://components.symfony-project.org/yaml/documentation

Day 3: The Data Model 36

----------------- Brought to you by

Listing
3-3

Listing
3-4

Listing
3-5

The onDelete attribute defines the ON DELETE behavior of foreign keys, and Propel
supports CASCADE, SETNULL, and RESTRICT. For instance, when a job record is deleted,
all the jobeet_category_affiliate related records will be automatically deleted by
the database or by Propel if the underlying engine does not support this functionality.

The Database
The symfony framework supports all PDO-supported databases (MySQL, PostgreSQL, SQLite,
Oracle, MSSQL, É). PDO21 is the database abstraction layer|Database Abstraction Layer
bundled with PHP.

LetÕs useMySQL for this tutorial:

$ mysqladmin -uroot -p create jobeet
Enter password: mYsEcret ## The password will echo as ********

Feel free to choose another database engine if you want. It wonÕtbe difficult to adapt the
code we will write as we will use the ORM will write the SQL for us.

We need to tell symfony to use this database for the Jobeet project:

$ php symfony configure:database
"mysql:host=localhost;dbname=jobeet" root mYsEcret

The configure:database task takes three arguments: the PDO DSN22, the username, and
the password to access the database. If you donÕtneed a password to access your database on
the development server, just omit the third argument.

The configure:database task stores the database configuration into the config/
databases.yml configuration file. Instead of using the task, you can edit this file by hand.

Passing the database password on the command line is convenient but insecure 23.
Depending on who has access to your environment, it might be better to edit the config/
databases.yml to change the password. Of course, to keep the password safe, the
configuration file access mode should also be restricted.

The ORM
Thanks to the database description from the schema.yml file, we can use some Propel built-
in tasks to generate the SQL statements needed to create the database tables:

$ php symfony propel:build --sql

The propel:build --sql task generates SQL statements in the data/ sql/ directory,
optimized for the database engine we have configured:

21. http://www.php.net/PDO
22. http://www.php.net/manual/en/pdo.drivers.php
23. http://dev.mysql.com/doc/refman/5.1/en/password-security.html

Day 3: The Data Model 37

----------------- Brought to you by

Listing
3-6

Listing
3-7

Listing
3-8

Listing
3-9

Listing
3-10

Listing
3-11

snippet from data/sql/lib.model.schema.sql
CREATE TABLE `jobeet_category`
(

`id` INTEGER NOT NULL AUTO_INCREMENT,
`name` VARCHAR(255) NOT NULL,
PRIMARY KEY (`id`),
UNIQUE KEY `jobeet_category_U_1` (`name`)

)Type=InnoDB;

To actually create the tables in the database, you need to run the propel:insert-sql task:

$ php symfony propel:insert-sql

As for any command line tool, symfony tasks can take arguments and options. Each task
comes with a built-in help message that can be displayed by running the help task:

$ php symfony help propel:insert-sql

The help message lists all the possible arguments and options, gives the default values for
each of them, and provides some useful usage examples.

The ORM also generates PHP classes that map table records to objects:

$ php symfony propel:build --model

The propel:build --model task generates PHP files in the lib/ model/ directory that
can be used to interact with the database.

By browsing the generated files, you have probably noticed that Propel generates four classes
per table . For the jobeet_job table:

¥ JobeetJob : An object of this class represents a single record of the jobeet_job
table. The class is empty by default.

¥ BaseJobeetJob : The parent class of JobeetJob . Each time you run
propel:build --model , this class is overwritten, so all customizations must be
done in the JobeetJob class.

¥ JobeetJobPeer : The class defines static methods that mostly return collections
of JobeetJob objects. The class is empty by default.

¥ BaseJobeetJobPeer : The parent class of JobeetJobPeer . Each time you run
propel:build --model , this class is overwritten, so all customizations must be
done in the JobeetJobPeer class.

The column values of a record can be manipulated with a model object by using some
accessors (get*() methods) and mutators (set*() methods):

$job = new JobeetJob();
$job->setPosition('Web developer');
$job->save();

echo $job->getPosition();

$job->delete();

You can also define foreign keys directly by linking objects together:

$category = new JobeetCategory();
$category->setName('Programming');

Day 3: The Data Model 38

----------------- Brought to you by

Listing
3-12

Listing
3-13

$job = new JobeetJob();
$job->setCategory($category);

The propel:build --all task is a shortcut for the tasks we have run in this section and
some more. So, run this task now to generate forms and validators for the Jobeet model
classes:

$ php symfony propel:build --all --no-confirmation

You will see validators in action today and forms will be explained in great details on day 10.

The Initial Data
The tables have been created in the database but there is no data in them. For any web
application, there are three types of data:

¥ Initial data : Initial data are needed for the application to work. For example, Jobeet
needs some initial categories. If not, nobody will be able to submit a job. We also
need an admin user to be able to login to the backend.

¥ Test data : Test Data are needed for the application to be tested. As a developer,
you will write tests to ensure that Jobeet behaves as described in the user stories,
and the best way is to write automated tests. So, each time you run your tests, you
need a clean database with some fresh data to test on.

¥ User data : User data are created by the users during the normal life of the
application.

Each time symfony creates the tables in the database, all the data are lost. To populate the
database with some initial data, we could create a PHP script, or execute some SQL
statements with the mysql program. But as the need is quite common, there is a better way
with symfony: create YAML files in the data/ fixtures/ directory and use the
propel:data-load task to load them into the database.

First, create the following fixture files:

data/fixtures/010_categories.yml
JobeetCategory:

design: { name: Design }
programming: { name: Programming }
manager: { name: Manager }
administrator: { name: Administrator }

data/fixtures/020_jobs.yml
JobeetJob:

job_sensio_labs:
category_id: programming
type: full-time
company: Sensio Labs
logo: sensio-labs.gif
url: http://www.sensiolabs.com/
position: Web Developer
location: Paris, France
description: |

You've already developed websites with symfony and you want to
work with Open-Source technologies. You have a minimum of 3
years experience in web development with PHP or Java and you

Day 3: The Data Model 39

----------------- Brought to you by

wish to participate to development of Web 2.0 sites using the
best frameworks available.

how_to_apply: |
Send your resume to fabien.potencier [at] sensio.com

is_public: true
is_activated: true
token: job_sensio_labs
email: job@example.com
expires_at: 2010-10-10

job_extreme_sensio:
category_id: design
type: part-time
company: Extreme Sensio
logo: extreme-sensio.gif
url: http://www.extreme-sensio.com/
position: Web Designer
location: Paris, France
description: |

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor
in reprehenderit in.

Voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa
qui officia deserunt mollit anim id est laborum.

how_to_apply: |
Send your resume to fabien.potencier [at] sensio.com

is_public: true
is_activated: true
token: job_extreme_sensio
email: job@example.com
expires_at: 2010-10-10

The job fixture file references two images. You can download them
(http://www.symfony-project.org/get/jobeet/sensio-labs.gif ,
http://www.symfony-project.org/ get/ jobeet/ extreme-sensio.gif) and put
them under the web/uploads/jobs/ directory.

A fixtures file is written in YAML, and defines model objects, labelled with a unique name (for
instance, we have defined two jobs labelled job_sensio_labs and job_extreme_sensio).
This label is of great use to link related objects without having to define primary keys (which
are often auto-incremented and cannot be set). For instance, the job_sensio_labs job
category is programming , which is the label given to the ÔProgrammingÕ category.

In a YAML file, when a string contains line breaks (like the description column in the job
fixture file), you can use the pipe (|) to indicate that the string will span several lines.

Although a fixture file can contain objects from one or several models, we have decided to
create one file per model for the Jobeet fixtures.

Day 3: The Data Model 40

----------------- Brought to you by

Listing
3-14

Listing
3-15

Notice the numbers prefixing the filenames. This is a simple way to control the order of
data loading. Later in the project, if we need to insert some new fixture file, it will be easy
as we have some free numbers between existing ones.

In a fixture file, you donÕtneed to define all columns values. If not, symfony will use the
default value defined in the database schema. And as symfony uses Propel to load the data
into the database, all the built-in behaviors (like automatically setting the created_at or
updated_at columns) and the custom behaviors you might have added to the model classes
are activated.

Loading the initial data into the database is as simple as running the propel:data-load
task:

$ php symfony propel:data-load

The propel:build --all --and-load task is a shortcut for the propel:build --all
task followed by the propel:data-load task.

See it in Action in the Browser
We have used the command line interface a lot but thatÕsnot really exciting, especially for a
web project. We now have everything we need to create Web pages that interact with the
database.

LetÕssee how to display the list of jobs, how to edit an existing job, and how to delete a job.
As explained during the first day, a symfony project is made of applications. Each application
is further divided into modules . A module is a self-contained set of PHP code that represents
a feature of the application (the API module for example), or a set of manipulations the user
can do on a model object (a job module for example).

Symfony is able to automatically generate a module for a given model that provides basic
manipulation features:

$ php symfony propel:generate-module --with-show
--non-verbose-templates frontend job JobeetJob

The propel:generate-module generates a job module in the frontend application for
the JobeetJob model. As with most symfony tasks, some files and directories have been
created for you under the apps/frontend/modules/job/ directory:

Directory Description

actions/ The module actions

templates/ The module templates

The actions/actions.class.php file defines all the available action for the job module:

Action name Description

index Displays the records of the table

show Displays the fields and their values for a given record

new Displays a form to create a new record

create Creates a new record

Day 3: The Data Model 41

----------------- Brought to you by

Listing
3-16

Listing
3-17

Listing
3-18

Action name Description

edit Displays a form to edit an existing record

update Updates a record according to the user submitted values

delete Deletes a given record from the table

You can now test the job module in a browser:

http://www.jobeet.com.localhost/frontend_dev.php/job

If you try to edit a job, you will have an exception because symfony needs a text
representation of a category. A PHP object representation can be defined with the PHP
__toString() magic method. The text representation of a category record should be
defined in the JobeetCategory model class:

// lib/model/JobeetCategory.php
class JobeetCategory extends BaseJobeetCategory
{

public function __toString()
{

return $this->getName();
}

}

Now each time symfony needs a text representation of a category, it calls the __toString()
method which returns the category name. As we will need a text representation of all model
classes at one point or another, letÕs define a __toString() method for every model class:

// lib/model/JobeetJob.php
class JobeetJob extends BaseJobeetJob
{

Day 3: The Data Model 42

----------------- Brought to you by

public function __toString()
{

return sprintf('%s at %s (%s)', $this->getPosition(),
$this->getCompany(), $this->getLocation());

}
}

// lib/model/JobeetAffiliate.php
class JobeetAffiliate extends BaseJobeetAffiliate
{

public function __toString()
{

return $this->getUrl();
}

}

You can now create and edit jobs. Try to leave a required field blank, or try to enter an invalid
date. ThatÕsright, symfony has created basic validation rules by introspecting the database
schema.

Final Thoughts
ThatÕsall. I have warned you in the introduction. Today, we have barely written PHP code but
we have a working web module for the job model, ready to be tweaked and customized.
Remember, no PHP code also means no bugs!

If you still have some energy left, feel free to read the generated code for the module and the
model and try to understand how it works. If not, donÕtworry and sleep well, as tomorrow we
will talk about one of the most used paradigm in web frameworks, the MVC design pattern 24.

24. http://en.wikipedia.org/wiki/Model-view-controller

Day 3: The Data Model 43

----------------- Brought to you by

Day 4

The Controller and the View

Yesterday, we explored how symfony simplifies database management by abstracting the
differences between database engines, and by converting the relational elements to nice
object oriented classes. We have also played with Propel to describe the database schema,
create the tables, and populate the database with some initial data.

Today, we are going to customize the basic job module we created previously. The job
module already has all the code we need for Jobeet:

¥ A page to list all jobs
¥ A page to create a new job
¥ A page to update an existing job
¥ A page to delete a job

Although the code is ready to be used as is, we will refactor the templates to match closer to
the Jobeet mockups.

The MVCArchitecture
If you are used to developing PHP websites without a framework, you probably use the one
PHP file per HTML page paradigm. These PHP files probably contain the same kind of
structure: initialization and global configuration, business logic related to the requested page,
database records fetching, and finally HTML code that builds the page.

You may use a templating engine to separate the logic from the HTML. Perhaps you use a
database abstraction layer to separate model interaction from business logic. But most of the
time, you end up with a lot of code that is a nightmare to maintain. It was fast to build, but
over time, itÕsmore and more difficult to make changes, especially because nobody except
you understands how it is built and how it works.

As with every problem, there are nice solutions. For web development, the most common
solution for organizing your code nowadays is the MVC design pattern 25. In short, the MVC
design pattern defines a way to organize your code according to its nature. This pattern
separates the code into three layers :

¥ The Model layer defines the business logic (the database belongs to this layer). You
already know that symfony stores all the classes and files related to the Model in the
lib/model/ directory.

¥ The View is what the user interacts with (a template engine is part of this layer). In
symfony, the View layer is mainly made of PHP templates. They are stored in various
templates/ directories as we will see later in these lines.

25. http://en.wikipedia.org/wiki/Model-view-controller

Day 4: The Controller and the View 44

----------------- Brought to you by

¥ The Controller is a piece of code that calls the Model to get some data that it
passes to the View for rendering to the client. When we installed symfony at the
beginning of this book, we saw that all requests are managed by front controllers
(index.php and frontend_dev.php). These front controllers delegate the real
work to actions . As we saw previously, these actions are logically grouped into
modules .

Today, we will use the mockup defined in day 2 to customize the homepage and the job page.
We will also make them dynamic. Along the way, we will tweak a lot of things in many
different files to demonstrate the symfony directory structure and the way to separate code
between layers.

The Layout
First, if you have a closer look at the mockups, you will notice that much of each page looks
the same. You already know that code duplication is bad, whether we are talking about HTML
or PHP code, so we need to find a way to prevent these common view elements from resulting
in code duplication.

One way to solve the problem is to define a header and a footer and include them in each
template:

Day 4: The Controller and the View 45

----------------- Brought to you by

Listing
4-1

But here the header and the footer files do not contain valid HTML. There must be a better
way. Instead of reinventing the wheel, we will use another design pattern to solve this
problem: the decorator design pattern 26. The decorator design pattern resolves the problem
the other way around: the template is decorated after the content is rendered by a global
template, called a layout in symfony:

The default layout of an application is called layout.php and can be found in the apps/
frontend/ templates/ directory. This directory contains all the global templates for an
application.

Replace the default symfony layout with the following code:

<!-- apps/frontend/templates/layout.php -->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

<head>
<title>Jobeet - Your best job board</title>
<link rel="shortcut icon" href="/favicon.ico" />
<?php include_javascripts() ?>
<?php include_stylesheets() ?>

</head>
<body>

<div id="container">
<div id="header">

<div class="content">
<h1><a href="<?php echo url_for('job/index') ?>">

<img src="http://www.symfony-project.org/images/logo.jpg"
alt="Jobeet Job Board" />

</h1>

<div id="sub_header">
<div class="post">

<h2>Ask for people</h2>
<div>

<a href="<?php echo url_for('job/index') ?>">Post a Job
</div>

</div>

<div class="search">
<h2>Ask for a job</h2>
<form action="" method="get">

<input type="text" name="keywords"
id="search_keywords" />

<input type="submit" value="search" />
<div class="help">

Enter some keywords (city, country, position, ...)

26. http://en.wikipedia.org/wiki/Decorator_pattern

Day 4: The Controller and the View 46

----------------- Brought to you by

</div>
</form>

</div>
</div>

</div>
</div>

<div id="content">
<?php if ($sf_user->hasFlash('notice')): ?>

<div class="flash_notice">
<?php echo $sf_user->getFlash('notice') ?>

</div>
<?php endif ?>

<?php if ($sf_user->hasFlash('error')): ?>
<div class="flash_error">

<?php echo $sf_user->getFlash('error') ?>
</div>

<?php endif ?>

<div class="content">
<?php echo $sf_content ?>

</div>
</div>

<div id="footer">
<div class="content">

<img src="http://www.symfony-project.org/images/

jobeet-mini.png" />
powered by
<img src="http://www.symfony-project.org/images/symfony.gif"

alt="symfony framework" />

About Jobeet
<li class="feed">Full feed
Jobeet API
<li class="last">Affiliates

</div>

</div>
</div>

</body>
</html>

A symfony template is just a plain PHP file. In the layout template, you see calls to PHP
functions and references to PHP variables. $sf_content is the most interesting variable: it
is defined by the framework itself and contains the HTML generated by the action.

If you browse the job module (http://www.jobeet.com.localhost/
frontend_dev.php/job), you will see that all actions are now decorated by the layout.

Day 4: The Controller and the View 47

----------------- Brought to you by

The Stylesheets, Images, and JavaScripts
As this tutorial is not about web design, we have already prepared all the needed assets we
will use for Jobeet: download the image files27 archive and put them into the web/ images/
directory; download the stylesheet files 28 archive and put them into the web/css/ directory.

In the layout, we have included a favicon . You can download the Jobeet one29 and put it
under the web/ directory.

By default, the generate:project task has created three directories for the project
assets: web/ images/ for images, web/ ~css|CSS~/ for stylesheets, and web/ js/ for
JavaScripts. This is one of the many conventions defined by symfony, but you can of course
store them elsewhere under the web/ directory.

The astute reader will have noticed that even if the main.css file is not mentioned anywhere
in the default layout, it is definitely present in the generated HTML. But not the other ones.
How is this possible?

The stylesheet file has been included by the include_stylesheets() function call found
within the layout <head> tag. The include_stylesheets() function is called a helper . A
helper is a function, defined by symfony, that can take parameters and returns HTML code.
Most of the time, helpers are time-savers, they package code snippets frequently used in
templates. The include_stylesheets() helper generates <link> tags for stylesheets.

27. http://www.symfony-project.org/get/jobeet/images.zip
28. http://www.symfony-project.org/get/jobeet/css.zip
29. http://www.symfony-project.org/get/jobeet/favicon.ico

Day 4: The Controller and the View 48

----------------- Brought to you by

Listing
4-2

Listing
4-3

Listing
4-4

Listing
4-5

But how does the helper know which stylesheets to include?

The View layer can be configured by editing the view.yml configuration file of the
application. Here is the default one generated by the generate:app task:

apps/frontend/config/view.yml
default:

http_metas:
content-type: text/html

metas:
#title: symfony project
#description: symfony project
#keywords: symfony, project
#language: en
#robots: index, follow

stylesheets: [main.css]

javascripts: []

has_layout: true
layout: layout

The view.yml file configures the default settings for all the templates of the application.
For instance, the stylesheets entry defines an array of stylesheet files to include for every
page of the application (the inclusion is done by the include_stylesheets() helper).

In the default view.yml configuration file, the referenced file is main.css , and not /css/
main.css . As a matter of fact, both definitions are equivalent as symfony prefixes relative
paths with /~css|CSS~/ .

If many files are defined, symfony will include them in the same order as the definition:

stylesheets: [main.css, jobs.css, job.css]

You can also change the media attribute and omit the .css suffix:

stylesheets: [main.css, jobs.css, job.css, print: { media: print }]

This configuration will be rendered as:

<link rel="stylesheet" type="text/css" media="screen"
href="/css/main.css" />

<link rel="stylesheet" type="text/css" media="screen"
href="/css/jobs.css" />

<link rel="stylesheet" type="text/css" media="screen"
href="/css/job.css" />

<link rel="stylesheet" type="text/css" media="print"
href="/css/print.css" />

The view.yml configuration file also defines the default layout used by the application. By
default, the name is layout , and so symfony decorates every page with the layout.php
file. You can also disable the decoration process altogether by switching the has_layout
entry to false .

Day 4: The Controller and the View 49

----------------- Brought to you by

Listing
4-6

Listing
4-7

Listing
4-8

Listing
4-9

It works as is but the jobs.css file is only needed for the homepage and the job.css file is
only needed for the job page. The view.yml configuration file can be customized on a per-
module basis. Change the stylesheets key of the application view.yml file to only contain the
main.css file:

apps/frontend/config/view.yml
stylesheets: [main.css]

To customize the view for the job module, create a view.yml file in the apps/ frontend/
modules/job/config/ directory:

apps/frontend/modules/job/config/view.yml
indexSuccess:

stylesheets: [jobs.css]

showSuccess:
stylesheets: [job.css]

Under the indexSuccess and showSuccess sections (they are the template names
associated with the index and show actions, as we will see later on), you can customize any
entry found under the default section of the application view.yml . All specific entries are
merged with the application configuration. You can also define some configuration for all
actions of a module with the special all section.

Configuration Principles in symfony

For many symfony configuration files, the same setting can be defined at different levels:

¥ The default configuration is located in the framework
¥ The global configuration for the project (in config/)
¥ The local configuration for an application (in apps/APP/config/)
¥ The local configuration restricted to a module (in apps/ APP/modules/ MODULE/

config/)

At runtime, the configuration system merges all the values from the different files if they
exist and caches the result for better performance.

As a rule of thumb, when something is configurable via a configuration file, the same can be
accomplished with PHP code. Instead of creating a view.yml file for the job module for
instance, you can also use the use_stylesheet() helper to include a stylesheet from a
template:

<?php use_stylesheet('main.css') ?>

You can also use this helper in the layout to include a stylesheet globally.

Choosing between one method or the other is really a matter of taste. The view.yml file
provides a way to define things for all actions of a module, which is not possible in a template,
but the configuration is quite static. On the other hand, using the use_stylesheet() helper
is more flexible and moreover, everything is in the same place: the stylesheet definition and
the HTML code. For Jobeet, we will use the use_stylesheet() helper, so you can remove
the view.yml we have just created and update the job templates with the
use_stylesheet() calls:

<!-- apps/frontend/modules/job/templates/indexSuccess.php -->
<?php use_stylesheet('jobs.css') ?>

Day 4: The Controller and the View 50

----------------- Brought to you by

Listing
4-10

Listing
4-11

Listing
4-12

<!-- apps/frontend/modules/job/templates/showSuccess.php -->
<?php use_stylesheet('job.css') ?>

Symmetrically, the JavaScript configuration is done via the javascripts entry of the
view.yml configuration file and the use_javascript() helper defines JavaScript files to
include for a template.

The Job Homepage
As seen in day 3, the job homepage is generated by the index action of the job module. The
index action is the Controller part of the page and the associated template,
indexSuccess.php , is the View part:

apps/
frontend/

modules/
job/

actions/
actions.class.php

templates/
indexSuccess.php

The Action

Each action is represented by a method of a class. For the job homepage, the class is
jobActions (the name of the module suffixed by Actions) and the method is
executeIndex() (execute suffixed by the name of the action). It retrieves all the jobs from
the database:

// apps/frontend/modules/job/actions/actions.class.php
class jobActions extends sfActions
{

public function executeIndex(sfWebRequest $request)
{

$this->jobeet_jobs = JobeetJobPeer::doSelect(new Criteria());
}

// ...
}

LetÕshave a closer look at the code: the executeIndex() method (the Controller) calls the
Model JobeetJobPeer to retrieve all the jobs (new Criteria()). It returns an array of
JobeetJob objects that are assigned to the jobeet_jobs object property.

All such object properties are then automatically passed to the template (the View). To pass
data from the Controller to the View, just create a new property:

public function executeFooBar(sfWebRequest $request)
{

$this->foo = 'bar';
$this->bar = array('bar', 'baz');

}

This code will make $foo and $bar variables accessible in the template.

Day 4: The Controller and the View 51

----------------- Brought to you by

Listing
4-13

Listing
4-14

The Template

By default, the template name associated with an action is deduced by symfony thanks to a
convention (the action name suffixed by Success).

The indexSuccess.php template generates an HTML table for all the jobs. Here is the
current template code:

<!-- apps/frontend/modules/job/templates/indexSuccess.php -->
<?php use_stylesheet('jobs.css') ?>

<h1>Job List</h1>

<table>
<thead>

<tr>
<th>Id</th>
<th>Category</th>
<th>Type</th>

<!-- more columns here -->
<th>Created at</th>
<th>Updated at</th>

</tr>
</thead>
<tbody>

<?php foreach ($jobeet_jobs as $jobeet_job): ?>
<tr>

<td>
<a href="<?php echo url_for('job/show?id='.$jobeet_job->getId())

?>">
<?php echo $jobeet_job->getId() ?>

</td>
<td><?php echo $jobeet_job->getCategoryId() ?></td>
<td><?php echo $jobeet_job->getType() ?></td>

<!-- more columns here -->
<td><?php echo $jobeet_job->getCreatedAt() ?></td>
<td><?php echo $jobeet_job->getUpdatedAt() ?></td>

</tr>
<?php endforeach ?>

</tbody>
</table>

<a href="<?php echo url_for('job/new') ?>">New

In the template code, the foreach iterates through the list of Job objects ($jobeet_jobs),
and for each job, each column value is output. Remember, accessing a column value is as
simple as calling an accessor method which name begins with get and the camelCased
column name (for instance the getCreatedAt() method for the created_at column).

LetÕs clean this up a bit to only display a sub-set of the available columns:

<!-- apps/frontend/modules/job/templates/indexSuccess.php -->
<?php use_stylesheet('jobs.css') ?>

<div id="jobs">
<table class="jobs">

<?php foreach ($jobeet_jobs as $i => $job): ?>
<tr class="<?php echo fmod($i, 2) ? 'even' : 'odd' ?>">

Day 4: The Controller and the View 52

----------------- Brought to you by

Listing
4-15

<td class="location"><?php echo $job->getLocation() ?></td>
<td class="position">

<a href="<?php echo url_for('job/show?id='.$job->getId()) ?>">
<?php echo $job->getPosition() ?>

</td>
<td class="company"><?php echo $job->getCompany() ?></td>

</tr>
<?php endforeach ?>

</table>
</div>

The url_for() function call in this template is a symfony helper that we will discuss
tomorrow.

The Job Page Template
Now letÕscustomize the template of the job page. Open the showSuccess.php file and
replace its content with the following code:

<!-- apps/frontend/modules/job/templates/showSuccess.php -->
<?php use_stylesheet('job.css') ?>
<?php use_helper('Text') ?>

<div id="job">
<h1><?php echo $job->getCompany() ?></h1>
<h2><?php echo $job->getLocation() ?></h2>
<h3>

<?php echo $job->getPosition() ?>
<small> - <?php echo $job->getType() ?></small>

</h3>

<?php if ($job->getLogo()): ?>
<div class="logo">

<a href="<?php echo $job->getUrl() ?>">

Day 4: The Controller and the View 53

----------------- Brought to you by

Listing
4-16

Listing
4-17

<img src="http://www.symfony-project.org/uploads/jobs/<?php echo
$job->getLogo() ?>"

alt="<?php echo $job->getCompany() ?> logo" />

</div>
<?php endif ?>

<div class="description">
<?php echo simple_format_text($job->getDescription()) ?>

</div>

<h4>How to apply?</h4>

<p class="how_to_apply"><?php echo $job->getHowToApply() ?></p>

<div class="meta">
<small>posted on <?php echo $job->getCreatedAt('m/d/Y') ?></small>

</div>

<div style="padding: 20px 0">
<a href="<?php echo url_for('job/edit?id='.$job->getId()) ?>">

Edit

</div>
</div>

This template uses the $job variable passed by the action to display the job information. As
we have renamed the variable passed to the template from $jobeet_job to $job , you need
to also make this change in the show action (be careful, there are two occurrences of the
variable):

// apps/frontend/modules/job/actions/actions.class.php
public function executeShow(sfWebRequest $request)
{

$this->job =
JobeetJobPeer::retrieveByPk($request->getParameter('id'));

$this->forward404Unless($this->job);
}

Notice that some Propel accessors take arguments. As we have defined the created_at
column as a timestamp, the getCreatedAt() accessor takes a date formatting pattern as its
first argument:

$job->getCreatedAt('m/d/Y');

The job description uses the simple_format_text() helper to format it as HTML, by
replacing carriage returns with
 for instance. As this helper belongs to the Text
helper group, which is not loaded by default, we have loaded it manually by using the
use_helper() helper .

Day 4: The Controller and the View 54

----------------- Brought to you by

Listing
4-18

Listing
4-19

Slots
Right now, the title of all pages is defined in the <title> tag of the layout:

<title>Jobeet - Your best job board</title>

But for the job page, we want to provide more useful information, like the company name and
the job position.

In symfony, when a zone of the layout depends on the template to be displayed, you need to
define a slot:

Add a slot to the layout to allow the title to be dynamic:

// apps/frontend/templates/layout.php
<title><?php include_slot('title') ?></title>

Each slot is defined by a name (title) and can be displayed by using the include_slot()
helper. Now, at the beginning of the showSuccess.php template, use the slot() helper to
define the content of the slot for the job page:

Day 4: The Controller and the View 55

----------------- Brought to you by

Listing
4-20

Listing
4-21

Listing
4-22

Listing
4-23

Listing
4-24

Listing
4-25

// apps/frontend/modules/job/templates/showSuccess.php
<?php slot(

'title',
sprintf('%s is looking for a %s', $job->getCompany(),

$job->getPosition()))
?>

If the title is complex to generate, the slot() helper can also be used with a block of code:

// apps/frontend/modules/job/templates/showSuccess.php
<?php slot('title') ?>

<?php echo sprintf('%s is looking for a %s', $job->getCompany(),
$job->getPosition()) ?>
<?php end_slot() ?>

For some pages, like the homepage, we just need a generic title. Instead of repeating the
same title over and over again in templates, we can define a default title in the layout:

// apps/frontend/templates/layout.php
<title>

<?php include_slot('title', 'Jobeet - Your best job board') ?>
</title>

The second argument of the include_slot() method is the default value for the slot if it
has not been defined. If the default value is longer or has some HTML tags, you can also
defined it like in the following code:

// apps/frontend/templates/layout.php
<title>

<?php if (!include_slot('title')): ?>
Jobeet - Your best job board

<?php endif ?>
</title>

The include_slot() helper returns true if the slot has been defined. So, when you define
the title slot content in a template, it is used; if not, the default title is used.

We have already seen quite a few helpers beginning with include_ . These helpers output
the HTML and in most cases have a get_ helper counterpart to just return the content:

<?php include_slot('title') ?>
<?php echo get_slot('title') ?>

<?php include_stylesheets() ?>
<?php echo get_stylesheets() ?>

The Job Page Action
The job page is generated by the show action, defined in the executeShow() method of the
job module:

class jobActions extends sfActions
{

public function executeShow(sfWebRequest $request)

Day 4: The Controller and the View 56

----------------- Brought to you by

{
$this->job =

JobeetJobPeer::retrieveByPk($request->getParameter('id'));
$this->forward404Unless($this->job);

}

// ...
}

As in the index action, the JobeetJobPeer class is used to retrieve a job, this time by using
the retrieveByPk() method. The parameter of this method is the unique identifier of a job,
its primary key. The next section will explain why the $request->getParameter('id')
statement returns the job primary key.

The generated model classes contain a lot of useful methods to interact with the project
objects. Take some time to browse the code located in the lib/ om/ directory and discover
all the power embedded in these classes.

If the job does not exist in the database, we want to forward the user to a 404 page, which is
exactly what the forward404Unless() method does. It takes a Boolean as its first argument
and, unless it is true, stops the current flow of execution. As the forward methods stops the
execution of the action right away by throwing a sfError404Exception , you donÕtneed to
return afterwards.

As for exceptions, the page displayed to the user is different in the prod environment and in
the dev environment:

Before you deploy the Jobeet website to the production server, you will learn how to
customize the default 404 page.

Day 4: The Controller and the View 57

----------------- Brought to you by

Listing
4-26

Listing
4-27

Listing
4-28

The ÒforwardÓ Methods Family

The forward404Unless call is actually equivalent to:

$this->forward404If(!$this->job);

which is also equivalent to:

if (!$this->job)
{

$this->forward404();
}

The forward404() method itself is just a shortcut for:

$this->forward('default', '404');

The forward() method forwards to another action of the same application; in the previous
example, to the 404 action of the default module. The default module is bundled with
symfony and provides default actions to render 404, secure, and login pages.

The Request and the Response
When you browse to the /job or /job/ show/ id/1 pages in your browser, your are initiating
a round trip with the web server. The browser is sending a request and the server sends
back a response|HTTP Response .

We have already seen that symfony encapsulates the request in a sfWebRequest object (see
the executeShow() method signature). And as symfony is an Object-Oriented framework,
the response is also an object, of class sfWebResponse . You can access the response object
in an action by calling $this->getResponse() .

These objects provide a lot of convenient methods to access information from PHP functions
and PHP global variables.

Why does symfony wrap existing PHP functionalities? First, because the symfony methods
are more powerful than their PHP counterpart. Then, because when you test an
application, it is much more easier to simulate a request or a response object than trying to
fiddle around with global variables or work with PHP functions like header() which do too
much magic behind the scene.

The Request

The sfWebRequest class wraps the $_SERVER, $_COOKIE, $_GET, $_POST, and $_FILES
PHP global arrays:

Method name PHP equivalent

getMethod() $_SERVER['REQUEST_METHOD']

getUri() $_SERVER['REQUEST_URI']

getReferer() $_SERVER['HTTP_REFERER']

getHost() $_SERVER['HTTP_HOST']

getLanguages() $_SERVER['HTTP_ACCEPT_LANGUAGE']

Day 4: The Controller and the View 58

----------------- Brought to you by

Method name PHP equivalent

getCharsets() $_SERVER['HTTP_ACCEPT_CHARSET']

isXmlHttpRequest() $_SERVER['X_REQUESTED_WITH'] == 'XMLHttpRequest'

getHttpHeader() $_SERVER

getCookie() $_COOKIE

isSecure() $_SERVER['HTTPS']

getFiles() $_FILES

getGetParameter() $_GET

getPostParameter() $_POST

getUrlParameter() $_SERVER['PATH_INFO']

getRemoteAddress() $_SERVER['REMOTE_ADDR']

We have already accessed request parameters by using the getParameter() method. It
returns a value from the $_GETor $_POSTglobal variable, or from the PATH_INFOvariable.

If you want to ensure that a request parameter comes from a particular one of these
variables, you need use the getGetParameter() , getPostParameter() , and
getUrlParameter() methods respectively.

When you want to restrict an action for a specific HTTP method, for instance when you
want to ensure that a form is submitted as a POST, you can use the isMethod() method:
$this->forwardUnless($request->isMethod('POST')); .

The Response

The sfWebResponse class wraps the header() and setrawcookie() PHP methods:

Method name PHP equivalent

setCookie() setrawcookie()

setStatusCode() header()

setHttpHeader() header()

setContentType() header()

addVaryHttpHeader() header()

addCacheControlHttpHeader() header()

Of course, the sfWebResponse class also provides a way to set the content of the response
(setContent()) and send the response to the browser (send()).

Earlier today we saw how to manage stylesheets and JavaScripts in both the view.yml file
and in templates. In the end, both techniques use the response object addStylesheet() and
addJavascript() methods.

The sfAction 30, sfRequest 31, and sfResponse 32 classes provide a lot of other useful
methods. DonÕt hesitate to browse the API documentation 33 to learn more about all
symfony internal classes.

30. http://www.symfony-project.org/api/1_4/sfAction
31. http://www.symfony-project.org/api/1_4/sfRequest
32. http://www.symfony-project.org/api/1_4/sfResponse

Day 4: The Controller and the View 59

----------------- Brought to you by

Final Thoughts
Today, we have described some design patterns used by symfony. Hopefully the project
directory structure now makes more sense. We have played with templates by manipulating
the layout and template files. We have also made them a bit more dynamic thanks to slots and
actions.

Tomorrow, we will be dedicated to the url_for() helper we have used here, and the routing
sub-framework associated with it.

33. http://www.symfony-project.org/api/1_4/

Day 4: The Controller and the View 60

----------------- Brought to you by

Listing
5-1

Listing
5-2

Listing
5-3

Day 5

The Routing

If youÕvecompleted day 4, you should now be familiar with the MVC pattern and it should be
feeling like a more and more natural way of coding. Spend a bit more time with it and you
wonÕtlook back. To practice a bit, we customized the Jobeet pages and in the process, also
reviewed several symfony concepts, like the layout, helpers, and slots.

Today, we will dive into the wonderful world of the symfony routing framework.

URLs
If you click on a job on the Jobeet homepage, the URL looks like this: /job/ show/ id/1 . If
you have already developed PHP websites, you are probably more accustomed to URLs like
/job.php?id=1 . How does symfony make it work? How does symfony determine the action
to call based on this URL? Why is the id of the job retrieved with $request-
>getParameter('id') ? Here, we will answer all these questions.

But first, letÕstalk about URLs and what exactly they are. In a web context, a URL is the
unique identifier of a web resource. When you go to a URL, you ask the browser to fetch a
resource identified by that URL. So, as the URL is the interface between the website and the
user, it must convey some meaningful information about the resource it references. But
ÒtraditionalÓ URLs do not really describe the resource, they expose the internal structure of
the application. The user does not care that your website is developed with the PHP language
or that the job has a certain identifier in the database. Exposing the internal workings of your
application is also quite bad as far as security is concerned: What if the user tries to guess the
URL for resources he does not have access to? Sure, the developer must secure them the
proper way, but youÕd better hide sensitive information.

URLs are so important in symfony that it has an entire framework dedicated to their
management: the routing framework. The routing manages internal URIs and external URLs.
When a request comes in, the routing parses the URL and converts it to an internal URI.

You have already seen the internal URI of the job page in the indexSuccess.php template:

'job/show?id='.$job->getId()

The url_for() helper converts this internal URI to a proper URL:

/job/show/id/1

The internal URI is made of several parts: job is the module, show is the action and the
query string adds parameters to pass to the action. The generic pattern for internal URIs is:

MODULE/ACTION?key=value&key_1=value_1&...

Day 5: The Routing 61

----------------- Brought to you by

Listing
5-4

Listing
5-5

As the symfony routing is a two-way process, you can change the URLs without changing the
technical implementation. This is one of the main advantages of the front-controller design
pattern.

Routing Configuration
The mapping between internal URIs and external URLs is done in the routing.yml
configuration file:

apps/frontend/config/routing.yml
homepage:

url: /
param: { module: default, action: index }

default_index:
url: /:module
param: { action: index }

default:
url: /:module/:action/*

The routing.yml file describes routes. A route has a name (homepage), a pattern
(/:module/:action/*), and some parameters (under the param key).

When a request comes in, the routing tries to match a pattern for the given URL. The first
route that matches wins, so the order in routing.yml is important. LetÕstake a look at some
examples to better understand how this works.

When you request the Jobeet homepage, which has the /job URL, the first route that
matches is the default_index one. In a pattern, a word prefixed with a colon (:) is a
variable, so the /:module pattern means: Match a / followed by something. In our example,
the module variable will have job as a value. This value can then be retrieved with
$request->getParameter('module') in the action. This route also defines a default
value for the action variable. So, for all URLs matching this route, the request will also have
an action parameter with index as a value.

If you request the /job/ show/ id/1 page, symfony will match the last pattern: /:module/
:action/* . In a pattern, a star (*) matches a collection of variable/ value pairs separated by
slashes (/):

Request parameter Value

module job

action show

id 1

The module and action variables are special as they are used by symfony to determine
the action to execute.

The /job/ show/ id/1 URL can be created from a template by using the following call to the
url_for() helper:

url_for('job/show?id='.$job->getId())

You can also use the route name by prefixing it by @:

Day 5: The Routing 62

----------------- Brought to you by

Listing
5-6

Listing
5-7

Listing
5-8

Listing
5-9

Listing
5-10

Listing
5-11

url_for('@default?module=job&action=show&id='.$job->getId())

Both calls are equivalent but the latter is much faster as the routing does not have to parse all
routes to find the best match, and it is less tied to the implementation (the module and action
names are not present in the internal URI).

Route Customizations
For now, when you request the / URL in a browser, you have the default congratulations
page of symfony. ThatÕsbecause this URL matches the homepage route . But it makes sense
to change it to be the Jobeet homepage. To make the change, modify the module variable of
the homepage route to job :

apps/frontend/config/routing.yml
homepage:

url: /
param: { module: job, action: index }

We can now change the link of the Jobeet logo in the layout to use the homepage route:

<!-- apps/frontend/templates/layout.php -->
<h1>

<a href="<?php echo url_for('homepage') ?>">
<img src="http://www.symfony-project.org/images/logo.jpg" alt="Jobeet

Job Board" />

</h1>

That was easy!

When you update the routing configuration, the changes are immediately taken into
account in the development environment. But to make them also work in the production
environment, you need to clear the cache by calling the cache:clear task.

For something a bit more involved, letÕs change the job page URL to something more
meaningful:

/job/sensio-labs/paris-france/1/web-developer

Without knowing anything about Jobeet, and without looking at the page, you can understand
from the URL that Sensio Labs is looking for a Web developer to work in Paris, France.

Pretty URLs are important because they convey information for the user. It is also useful
when you copy and paste the URL in an email or to optimize your website for search
engines.

The following pattern matches such a URL:

/job/:company/:location/:id/:position

Edit the routing.yml file and add the job_show_user route at the beginning of the file:

Day 5: The Routing 63

----------------- Brought to you by

Listing
5-12

Listing
5-13

Listing
5-14

Listing
5-15

job_show_user:
url: /job/:company/:location/:id/:position
param: { module: job, action: show }

If you refresh the Jobeet homepage, the links to jobs have not changed. ThatÕsbecause to
generate a route, you need to pass all the required variables. So, you need to change the
url_for() call in indexSuccess.php to:

url_for('job/show?id='.$job->getId().'&company='.$job->getCompany().
'&location='.$job->getLocation().'&position='.$job->getPosition())

An internal URI can also be expressed as an array:

url_for(array(
'module' => 'job',
'action' => 'show',
'id' => $job->getId(),
'company' => $job->getCompany(),
'location' => $job->getLocation(),
'position' => $job->getPosition(),

))

Requirements
At the beginning of the book, we talked about validation and error handling for good reasons.
The routing system has a built-in validation feature. Each pattern variable can be validated by
a regular expression defined using the requirements entry of a route definition:

job_show_user:
url: /job/:company/:location/:id/:position
param: { module: job, action: show }
requirements:

id: \d+

The above requirements entry forces the id to be a numeric value. If not, the route wonÕt
match.

Route Class
Each route defined in routing.yml is internally converted to an object of class sfRoute 34.
This class can be changed by defining a class entry in the route definition. If you are
familiar with the HTTP protocol, you know that it defines several ÒmethodsÓ,like GET, POST,
HEAD|HEAD (HTTP Method) , DELETE, and PUT. The first three are supported by all
browsers, while the other two are not.

To restrict a route to only match for certain request methods, you can change the route class
to sfRequestRoute 35 and add a requirement for the virtual sf_method variable:

job_show_user:
url: /job/:company/:location/:id/:position
class: sfRequestRoute
param: { module: job, action: show }

34. http://www.symfony-project.org/api/1_4/sfRoute
35. http://www.symfony-project.org/api/1_4/sfRequestRoute

Day 5: The Routing 64

----------------- Brought to you by

Listing
5-16

Listing
5-17

Listing
5-18

Listing
5-19

requirements:
id: \d+
sf_method: [get]

Requiring a route to only match for some HTTP methods is not totally equivalent to using
sfWebRequest::isMethod() in your actions. ThatÕsbecause the routing will continue to
look for a matching route if the method does not match the expected one.

Object Route Class
The new internal URI for a job is quite long and tedious to write (url_for('job/
show?id='.$job->getId().'&company='.$job-
>getCompany().'&location='.$job->getLocation().'&position='.$job-
>getPosition())), but as we have just learned in the previous section, the route class can
be changed. For the job_show_user route, it is better to use sfPropelRoute 36 as the class
is optimized for routes that represent Propel objects or collections of Propel objects:

job_show_user:
url: /job/:company/:location/:id/:position
class: sfPropelRoute
options: { model: JobeetJob, type: object }
param: { module: job, action: show }
requirements:

id: \d+
sf_method: [get]

The options entry customizes the behavior of the route. Here, the model option defines the
Propel model class (JobeetJob) related to the route, and the type option defines that this
route is tied to one object (you can also use list if a route represents a collection of objects).

The job_show_user route is now aware of its relation with JobeetJob and so we can
simplify the url_for() call to:

url_for(array('sf_route' => 'job_show_user', 'sf_subject' => $job))

or just:

url_for('job_show_user', $job)

The first example is useful when you need to pass more arguments than just the object.

It works because all variables in the route have a corresponding accessor in the JobeetJob
class (for instance, the company route variable is replaced with the value of getCompany()).

If you have a look at generated URLs, they are not quite yet as we want them to be:

http://www.jobeet.com.localhost/frontend_dev.php/job/Sensio+Labs/
Paris%2C+France/1/Web+Developer

We need to ÒslugifyÓ the column values by replacing all non ASCII characters by a - . Open
the JobeetJob file and add the following methods to the class:

36. http://www.symfony-project.org/api/1_4/sfPropelRoute

Day 5: The Routing 65

----------------- Brought to you by

Listing
5-20

Listing
5-21

Listing
5-22

Listing
5-23

// lib/model/JobeetJob.php
public function getCompanySlug()
{

return Jobeet::slugify($this->getCompany());
}

public function getPositionSlug()
{

return Jobeet::slugify($this->getPosition());
}

public function getLocationSlug()
{

return Jobeet::slugify($this->getLocation());
}

Then, create the lib/Jobeet.class.php file and add the slugify method in it:

// lib/Jobeet.class.php
class Jobeet
{

static public function slugify($text)
{

// replace all non letters or digits by -
$text = preg_replace('/\W+/', '-', $text);

// trim and lowercase
$text = strtolower(trim($text, '-'));

return $text;
}

}

In this tutorial, we never show the opening <?php statement in the code examples that
only contain pure PHP code to optimize space and save some trees. You should obviously
remember to add it whenever you create a new PHP file. Just remember to not add it to
template files.

We have defined three new ÒvirtualÓaccessors: getCompanySlug() , getPositionSlug() ,
and getLocationSlug() . They return their corresponding column value after applying it
the slugify() method. Now, you can replace the real column names by these virtual ones in
the job_show_user route:

job_show_user:
url: /job/:company_slug/:location_slug/:id/:position_slug
class: sfPropelRoute
options: { model: JobeetJob, type: object }
param: { module: job, action: show }
requirements:

id: \d+
sf_method: [get]

You will now have the expected URLs:

http://www.jobeet.com.localhost/frontend_dev.php/job/sensio-labs/
paris-france/1/web-developer

Day 5: The Routing 66

----------------- Brought to you by

Listing
5-24

Listing
5-25

But thatÕsonly half the story. The route is able to generate a URL based on an object, but it is
also able to find the object related to a given URL. The related object can be retrieved with
the getObject() method of the route object. When parsing an incoming request, the routing
stores the matching route object for you to use in the actions. So, change the
executeShow() method to use the route object to retrieve the Jobeet object:

class jobActions extends sfActions
{

public function executeShow(sfWebRequest $request)
{

$this->job = $this->getRoute()->getObject();

$this->forward404Unless($this->job);
}

// ...
}

If you try to get a job for an unknown id , you will see a 404 error page but the error message
has changed:

ThatÕsbecause the 404 error has been thrown for you automatically by the getRoute()
method. So, we can simplify the executeShow method even more:

class jobActions extends sfActions
{

public function executeShow(sfWebRequest $request)
{

$this->job = $this->getRoute()->getObject();
}

// ...
}

If you donÕtwant the route to generate a 404 error, you can set the allow_empty routing
option to true .

The related object of a route is lazy loaded. It is only retrieved from the database if you call
the getRoute() method.

Day 5: The Routing 67

----------------- Brought to you by

Listing
5-26

Listing
5-27

Listing
5-28

Listing
5-29

Listing
5-30

Listing
5-31

Routing in Actions and Templates
In a template, the url_for() helper converts an internal URI to an external URL. Some
other symfony helpers also take an internal URI as an argument, like the link_to() helper
which generates an <a> tag:

<?php echo link_to($job->getPosition(), 'job_show_user', $job) ?>

It generates the following HTML code:

Web Developer

Both url_for() and link_to() can also generate absolute URLs:

url_for('job_show_user', $job, true);

link_to($job->getPosition(), 'job_show_user', $job, true);

If you want to generate a URL from an action, you can use the generateUrl() method:

$this->redirect($this->generateUrl('job_show_user', $job));

The Òredirect Ó Methods Family

Yesterday, we talked about the ÒforwardÓ methods. These methods forward the current
request to another action without a round-trip with the browser.

The ÒredirectÓmethods redirect the user to another URL. As with forward, you can use the
redirect() method, or the redirectIf() and redirectUnless() shortcut methods.

Collection Route Class
For the job module, we have already customized the show action route, but the URLs for the
others methods (index , new, edit , create , update , and delete) are still managed by the
default route:

default:
url: /:module/:action/*

The default route is a great way to start coding without defining too many routes. But as
the route acts as a Òcatch-allÓ, it cannot be configured for specific needs.

As all job actions are related to the JobeetJob model class, we can easily define a custom
sfPropelRoute route for each as we have already done for the show action. But as the job
module defines the classic seven actions possible for a model, we can also use the
sfPropelRouteCollection 37 class. Open the routing.yml file and modify it to read as
follows:

apps/frontend/config/routing.yml
job:

class: sfPropelRouteCollection
options: { model: JobeetJob }

37. http://www.symfony-project.org/api/1_4/sfPropelRouteCollection

Day 5: The Routing 68

----------------- Brought to you by

Listing
5-32

job_show_user:
url: /job/:company_slug/:location_slug/:id/:position_slug
class: sfPropelRoute
options: { model: JobeetJob, type: object }
param: { module: job, action: show }
requirements:

id: \d+
sf_method: [get]

default rules
homepage:

url: /
param: { module: job, action: index }

default_index:
url: /:module
param: { action: index }

default:
url: /:module/:action/*

The job route above is really just a shortcut that automatically generates the following seven
sfPropelRoute routes:

job:
url: /job.:sf_format
class: sfPropelRoute
options: { model: JobeetJob, type: list }
param: { module: job, action: index, sf_format: html }
requirements: { sf_method: get }

job_new:
url: /job/new.:sf_format
class: sfPropelRoute
options: { model: JobeetJob, type: object }
param: { module: job, action: new, sf_format: html }
requirements: { sf_method: get }

job_create:
url: /job.:sf_format
class: sfPropelRoute
options: { model: JobeetJob, type: object }
param: { module: job, action: create, sf_format: html }
requirements: { sf_method: post }

job_edit:
url: /job/:id/edit.:sf_format
class: sfPropelRoute
options: { model: JobeetJob, type: object }
param: { module: job, action: edit, sf_format: html }
requirements: { sf_method: get }

job_update:
url: /job/:id.:sf_format
class: sfPropelRoute
options: { model: JobeetJob, type: object }
param: { module: job, action: update, sf_format: html }

Day 5: The Routing 69

----------------- Brought to you by

Listing
5-33

Listing
5-34

Listing
5-35

requirements: { sf_method: put }

job_delete:
url: /job/:id.:sf_format
class: sfPropelRoute
options: { model: JobeetJob, type: object }
param: { module: job, action: delete, sf_format: html }
requirements: { sf_method: delete }

job_show:
url: /job/:id.:sf_format
class: sfPropelRoute
options: { model: JobeetJob, type: object }
param: { module: job, action: show, sf_format: html }
requirements: { sf_method: get }

Some routes generated by sfPropelRouteCollection have the same URL. The routing
is still able to use them because they all have different HTTP method requirements.

The job_delete and job_update routes requires HTTP methods that are not supported by
browsers (DELETEand PUT respectively). This works because symfony simulates them. Open
the _form.php template to see an example:

// apps/frontend/modules/job/templates/_form.php
<form action="..." ...>
<?php if (!$form->getObject()->isNew()): ?>

<input type="hidden" name="sf_method" value="PUT" />
<?php endif; ?>

<?php echo link_to(
'Delete',
'job/delete?id='.$form->getObject()->getId(),
array('method' => 'delete', 'confirm' => 'Are you sure?')

) ?>

All the symfony helpers can be told to simulate whatever HTTP method you want by passing
the special sf_method parameter.

symfony has other special parameters like sf_method , all starting with the sf_ prefix . In
the generated routes above, you can see another one: sf_format , which will be explained
further in this book.

Route Debugging
When you use collection routes, it is sometimes useful to list the generated routes. The
app:routes task outputs all the routes for a given application:

$ php symfony app:routes frontend

You can also have a lot of debugging information for a route by passing its name as an
additional argument:

$ php symfony app:routes frontend job_edit

Day 5: The Routing 70

----------------- Brought to you by

Listing
5-36

Default Routes
It is a good practice to define route s for all your URLs. As the job route defines all the routes
needed to describe the Jobeet application, go ahead and remove or comment the default
routes from the routing.yml configuration file:

apps/frontend/config/routing.yml
#default_index:
url: /:module
param: { action: index }
#
#default:
url: /:module/:action/*

The Jobeet application must still work as before.

Final Thoughts
Today was packed with a lot of new information. You have learned how to use the routing
framework of symfony and how to decouple your URLs from the technical implementation.

Tomorrow, we wonÕtintroduce any new concept, but rather spend time going deeper into
what weÕve covered so far.

Day 5: The Routing 71

----------------- Brought to you by

Listing
6-1

Listing
6-2

Day 6

More with the Model

Yesterday was great. You learned how to create pretty URLs and how to use the symfony
framework to automate a lot of things for you.

Today, we will enhance the Jobeet website by tweaking the code here and there. In the
process, you will learn more about all the features we have introduced during the first five
days of this tutorial.

The Propel Criteria Object
From the second dayÕs requirements:

ÒWhen a user comes to the Jobeet website, she sees a list of active jobs.Ó

But as of now, all jobs are displayed, whether they are active or not:

// apps/frontend/modules/job/actions/actions.class.php
class jobActions extends sfActions
{

public function executeIndex(sfWebRequest $request)
{

$this->jobeet_jobs = JobeetJobPeer::doSelect(new Criteria());
}

// ...
}

An active job is one that was posted less than 30 days ago. The doSelect() method takes a
Criteria object that describes the database request to execute. In the code above, an empty
Criteria is passed, which means that all the records are retrieved from the database.

LetÕs change it to only select active jobs:

public function executeIndex(sfWebRequest $request)
{

$criteria = new Criteria();
$criteria->add(JobeetJobPeer::CREATED_AT,

time() - 86400 * 30, Criteria::GREATER_THAN);

$this->jobeet_jobs = JobeetJobPeer::doSelect($criteria);
}

Day 6: More with the Model 72

----------------- Brought to you by

Listing
6-3

The Criteria::add() method adds a WHEREclause to the generated SQL. Here, we restrict
the criteria to only select jobs that are no older than 30 days. The add() method accepts a lot
of different comparison operators; here are the most common ones:

¥ Criteria::EQUAL
¥ Criteria::NOT_EQUAL
¥ Criteria::GREATER_THAN , Criteria::GREATER_EQUAL
¥ Criteria::LESS_THAN , Criteria::LESS_EQUAL
¥ Criteria::LIKE , Criteria::NOT_LIKE
¥ Criteria::CUSTOM
¥ Criteria::IN , Criteria::NOT_IN
¥ Criteria::ISNULL , Criteria::ISNOTNULL
¥ Criteria::CURRENT_DATE , Criteria::CURRENT_TIME ,

Criteria::CURRENT_TIMESTAMP

Debugging Propel generated SQL
As you donÕtwrite the SQL statements by hand, Propel will take care of the differences
between database engines and will generate SQL statements optimized for the database
engine you choose during day 3. But sometimes, it is of great help to see the SQL generated
by Propel; for instance, to debug a query that does not work as expected. In the dev
environment , symfony logs these queries (along with much more) in the log/ directory.
There is one log file for every combination of an application and an environment. The file we
are looking for is named frontend_dev.log :

log/frontend_dev.log
Dec 6 15:47:12 symfony [debug] {sfPropelLogger} exec: SET NAMES 'utf8'
Dec 6 15:47:12 symfony [debug] {sfPropelLogger} prepare: SELECT

jobeet_job.ID, jobeet_job.CATEGORY_ID, jobeet_job.TYPE,
jobeet_job.COMPANY, jobeet_job.LOGO, jobeet_job.URL,

jobeet_job.POSITION,
jobeet_job.LOCATION, jobeet_job.DESCRIPTION, jobeet_job.HOW_TO_APPLY,
jobeet_job.TOKEN, jobeet_job.IS_PUBLIC, jobeet_job.CREATED_AT,
jobeet_job.UPDATED_AT FROM `jobeet_job` WHERE jobeet_job.CREATED_AT>:p1

Dec 6 15:47:12 symfony [debug] {sfPropelLogger} Binding '2008-11-06
15:47:12'

at position :p1 w/ PDO type PDO::PARAM_STR

You can see for yourself that Propel has generated a where clause for the created_at
column (WHERE jobeet_job.CREATED_AT > :p1).

The :p1 string in the query indicates that Propel generates prepared statement s. The
actual value of :p1 (Ô2008-11-06 15:47:12 Õin the example above) is passed during the
execution of the query and properly escaped by the database engine. The use of prepared
statements dramatically reduces your exposure to SQL injection 38 attacks.

This is good, but itÕsa bit annoying to have to switch between the browser, the IDE, and the
log file every time you need to test a change. Thanks to the symfony web debug toolbar, all
the information you need is also available within the comfort of your browser:

38. http://en.wikipedia.org/wiki/Sql_injection

Day 6: More with the Model 73

----------------- Brought to you by

Listing
6-4

Listing
6-5

Object Serialization
Even if the above code works, it is far from perfect as it does not take into account some
requirements from day 2:

ÒAuser can come back to re-activate or extend the validity of the job ad for an extra 30
daysÉÓ

But as the above code only relies on the created_at value, and because this column stores
the creation date, we cannot satisfy the above requirement.

But if you remember the database schema we have described during day 3, we also have
defined an expires_at column. Currently, if this value is not set in fixture file, it remains
always empty. But when a job is created, it can be automatically set to 30 days after the
current date.

When you need to do something automatically before a Propel object is serialized to the
database, you can override the save() method of the model class:

// lib/model/JobeetJob.php
class JobeetJob extends BaseJobeetJob
{

public function save(PropelPDO $con = null)
{

if ($this->isNew() && !$this->getExpiresAt())
{

$now = $this->getCreatedAt() ? $this->getCreatedAt('U') : time();
$this->setExpiresAt($now + 86400 * 30);

}

return parent::save($con);
}

// ...
}

The isNew() method returns true when the object has not been serialized yet in the
database, and false otherwise.

Now, letÕschange the action to use the expires_at column instead of the created_at one
to select the active jobs:

public function executeIndex(sfWebRequest $request)
{

$criteria = new Criteria();
$criteria->add(JobeetJobPeer::EXPIRES_AT, time(),

Criteria::GREATER_THAN);

$this->jobeet_jobs = JobeetJobPeer::doSelect($criteria);
}

We restrict the query to only select jobs with the expires_at date in the future.

More with Fixtures
Refreshing the Jobeet homepage in your browser wonÕtchange anything as the jobs in the
database have been posted just a few days ago. LetÕschange the fixtures to add a job that is
already expired:

Day 6: More with the Model 74

----------------- Brought to you by

Listing
6-6

Listing
6-7

Listing
6-8

Listing
6-9

Listing
6-10

Listing
6-11

data/fixtures/020_jobs.yml
JobeetJob:

other jobs

expired_job:
category_id: programming
company: Sensio Labs
position: Web Developer
location: Paris, France
description: |

Lorem ipsum dolor sit amet, consectetur
adipisicing elit.

how_to_apply: Send your resume to lorem.ipsum [at] dolor.sit
is_public: true
is_activated: true
created_at: 2005-12-01
token: job_expired
email: job@example.com

Be careful when you copy and paste code in a fixture file to not break the indentation. The
expired_job must only have two spaces before it.

As you can see in the job we have added in the fixture file, the created_at column value can
be defined even if it is automatically filled by Propel. The defined value will override the
default one. Reload the fixtures and refresh your browser to ensure that the old job does not
show up:

$ php symfony propel:data-load

You can also execute the following query to make sure that the expires_at column is
automatically filled by the save() method, based on the created_at value:

SELECT `position`, `created_at`, `expires_at` FROM `jobeet_job`;

Custom Configuration
In the JobeetJob::save() method, we have hardcoded the number of days for the job to
expire. It would have been better to make the 30 days configurable. The symfony framework
provides a built-in configuration file for application specific settings , the app.yml file. This
YAML file can contain any setting you want:

apps/frontend/config/app.yml
all:

active_days: 30

In the application, these settings are available through the global sfConfig class:

sfConfig::get('app_active_days')

The setting has been prefixed by app_ because the sfConfig class also provides access to
symfony settings as we will see later on.

LetÕs update the code to take this new setting into account:

Day 6: More with the Model 75

----------------- Brought to you by

Listing
6-12

Listing
6-13

Listing
6-14

public function save(PropelPDO $con = null)
{

if ($this->isNew() && !$this->getExpiresAt())
{

$now = $this->getCreatedAt() ? $this->getCreatedAt('U') : time();
$this->setExpiresAt($now + 86400 *

sfConfig::get('app_active_days'));
}

return parent::save($con);
}

The app.yml configuration file is a great way to centralize global settings|Global Settings for
your application.

Last, if you need project-wide settings , just create a new app.yml file in the config folder at
the root of your symfony project.

Refactoring
Although the code we have written works fine, itÕsnot quite right yet. Can you spot the
problem?

The Criteria code does not belong to the action (the Controller layer), it belongs to the
Model layer. In the MVC model, the Model defines all the business logic , and the Controller
only calls the Model to retrieve data from it. As the code returns a collection of jobs, letÕs
move the code to the JobeetJobPeer class and create a getActiveJobs() method: [php] //
lib/ model/JobeetJobPeer.php class JobeetJobPeer extends BaseJobeetJobPeer { static public
function getActiveJobs() { $criteria = new Criteria(); $criteria->add(self::EXPIRES_AT, time(),

Criteria::GREATER_THAN);

return self::doSelect($criteria);
}

}

Now the action code can use this new method to retrieve the active jobs.

public function executeIndex(sfWebRequest $request)
{

$this->jobeet_jobs = JobeetJobPeer::getActiveJobs();
}

This refactoring has several benefits over the previous code:

¥ The logic to get the active jobs is now in the Model, where it belongs
¥ The code in the controller is thinner and much more readable
¥ The getActiveJobs() method is re-usable (for instance in another action)
¥ The model code is now unit testable

LetÕs sort the jobs by the expires_at column:

static public function getActiveJobs()
{

$criteria = new Criteria();
$criteria->add(self::EXPIRES_AT, time(), Criteria::GREATER_THAN);
$criteria->addDescendingOrderByColumn(self::EXPIRES_AT);

Day 6: More with the Model 76

----------------- Brought to you by

Listing
6-15

Listing
6-16

Listing
6-17

return self::doSelect($criteria);
}

The addDescendingOrderByColumn() method adds an ORDERBY clause to the generated
SQL (addAscendingOrderByColumn() also exists).

Categories on the Homepage
From the second dayÕs requirements:

ÒThe jobs are sorted by category and then by publication date (newer jobs first).Ó

Until now, we have not taken the job category into account. From the requirements, the
homepage must display jobs by category. First, we need to get all categories with at least one
active job.

Open the JobeetCategoryPeer class and add a getWithJobs() method:

// lib/model/JobeetCategoryPeer.php
class JobeetCategoryPeer extends BaseJobeetCategoryPeer
{

static public function getWithJobs()
{

$criteria = new Criteria();
$criteria->addJoin(self::ID, JobeetJobPeer::CATEGORY_ID);
$criteria->add(JobeetJobPeer::EXPIRES_AT, time(),

Criteria::GREATER_THAN);
$criteria->setDistinct();

return self::doSelect($criteria);
}

}

The Criteria::addJoin() method adds a JOIN clause to the generated SQL. By default,
the join condition is added to the WHEREclause. You can also change the join operator by
adding a third argument (Criteria::LEFT_JOIN , Criteria::RIGHT_JOIN , and
Criteria::INNER_JOIN).

Change the index action accordingly:

// apps/frontend/modules/job/actions/actions.class.php
public function executeIndex(sfWebRequest $request)
{

$this->categories = JobeetCategoryPeer::getWithJobs();
}

In the template, we need to iterate through all categories and display the active jobs:

// apps/frontend/modules/job/templates/indexSuccess.php
<?php use_stylesheet('jobs.css') ?>

<div id="jobs">
<?php foreach ($categories as $category): ?>

<div class="category_<?php echo Jobeet::slugify($category->getName())
?>">

<div class="category">
<div class="feed">

Feed

Day 6: More with the Model 77

----------------- Brought to you by

Listing
6-18

Listing
6-19

</div>
<h1><?php echo $category ?></h1>

</div>

<table class="jobs">
<?php foreach ($category->getActiveJobs() as $i => $job): ?>

<tr class="<?php echo fmod($i, 2) ? 'even' : 'odd' ?>">
<td class="location">

<?php echo $job->getLocation() ?>
</td>
<td class="position">

<?php echo link_to($job->getPosition(), 'job_show_user',
$job) ?>

</td>
<td class="company">

<?php echo $job->getCompany() ?>
</td>

</tr>
<?php endforeach; ?>

</table>
</div>

<?php endforeach; ?>
</div>

To display the category name in the template, we have used echo $category . Does this
sound weird? $category is an object, how can echo magically display the category name?
The answer was given during day 3 when we have defined the magic __toString()
method for all the model classes.

For this to work, we need to add the getActiveJobs() method to the JobeetCategory
class that returns the active jobs for the category object:

// lib/model/JobeetCategory.php
public function getActiveJobs()
{

$criteria = new Criteria();
$criteria->add(JobeetJobPeer::CATEGORY_ID, $this->getId());

return JobeetJobPeer::getActiveJobs($criteria);
}

In the add() call, we have omitted the third argument as Criteria::EQUAL is the default
value.

The JobeetCategory::getActiveJobs() method uses the
JobeetJobPeer::getActiveJobs() method to retrieve the active jobs for the given
category.

When calling the JobeetJobPeer::getActiveJobs() , we want to restrict the condition
even more by providing a category. Instead of passing the category object, we have decided
to pass a Criteria object as this is the best way to encapsulate a generic condition.

The getActiveJobs() needs to merge this Criteria argument with its own criteria. As the
Criteria is an object, this is quite simple:

// lib/model/JobeetJobPeer.php
static public function getActiveJobs(Criteria $criteria = null)
{

Day 6: More with the Model 78

----------------- Brought to you by

Listing
6-20

Listing
6-21

Listing
6-22

if (is_null($criteria))
{

$criteria = new Criteria();
}

$criteria->add(JobeetJobPeer::EXPIRES_AT, time(),
Criteria::GREATER_THAN);

$criteria->addDescendingOrderByColumn(self::EXPIRES_AT);

return self::doSelect($criteria);
}

Limit the Results
There is still one requirement to implement for the homepage job list:

ÒForeach category, the list only shows the first 10 jobs and a link allows to list all the jobs for
a given category.Ó

ThatÕs simple enough to add to the getActiveJobs() method:

// lib/model/JobeetCategory.php
public function getActiveJobs($max = 10)
{

$criteria = new Criteria();
$criteria->add(JobeetJobPeer::CATEGORY_ID, $this->getId());
$criteria->setLimit($max);

return JobeetJobPeer::getActiveJobs($criteria);
}

The appropriate LIMIT clause is now hard-coded into the Model, but it is better for this value
to be configurable. Change the template to pass a maximum number of jobs set in app.yml :

<!-- apps/frontend/modules/job/templates/indexSuccess.php -->
<?php foreach
($category->getActiveJobs(sfConfig::get('app_max_jobs_on_homepage')) as $i
=> $job): ?>

and add a new setting in app.yml :

all:
active_days: 30
max_jobs_on_homepage: 10

Day 6: More with the Model 79

----------------- Brought to you by

Listing
6-23

Dynamic Fixtures
Unless you lower the max_jobs_on_homepage setting to one, you wonÕtsee any difference.
We need to add a bunch of jobs to the fixture . So, you can copy and paste an existing job ten
or twenty times by handÉ but thereÕs a better way. Duplication is bad, even in fixture files.

symfony to the rescue! YAML files in symfony can contain PHP code that will be evaluated
just before the parsing of the file. Edit the 020_jobs.yml fixtures file and add the following
code at the end:

Starts at the beginning of the line (no whitespace before)
<?php for ($i = 100; $i <= 130; $i++): ?>

job_<?php echo $i ?>:
category_id: programming
company: Company <?php echo $i."\n" ?>
position: Web Developer
location: Paris, France
description: Lorem ipsum dolor sit amet, consectetur adipisicing elit.
how_to_apply: |

Send your resume to lorem.ipsum [at] company_<?php echo $i ?>.sit
is_public: true
is_activated: true
token: job_<?php echo $i."\n" ?>
email: job@example.com

<?php endfor ?>

Be careful, the YAML parser wonÕtlike you if you mess up with Indentation|Code Formatting .
Keep in mind the following simple tips when adding PHP code to a YAML file:

¥ The <?php ?> statements must always start the line or be embedded in a value.

Day 6: More with the Model 80

----------------- Brought to you by

Listing
6-24

Listing
6-25

¥ If a <?php ?> statement ends a line, you need to explicly output a new line (Ò\nÓ).

You can now reload the fixtures with the propel:data-load task and see if only 10 jobs are
displayed on the homepage for the Programming category. In the following screenshot, we
have changed the maximum number of jobs to five to make the image smaller:

Secure the Job Page
When a job expires, even if you know the URL, it must not be possible to access it anymore.
Try the URL for the expired job (replace the id with the actual id in your database - SELECT
id, token FROM jobeet_job WHERE expires_at < NOW()):

/frontend_dev.php/job/sensio-labs/paris-france/ID/web-developer-expired

Instead of displaying the job, we need to forward the user to a 404 page. But how can we do
this as the job is retrieved automatically by the route?

By default, the sfPropelRoute uses the standard doSelectOne() method to retrieve the
object, but you can change it by providing a method_for_criteria option in the route
configuration:

apps/frontend/config/routing.yml
job_show_user:

url: /job/:company_slug/:location_slug/:id/:position_slug
class: sfPropelRoute
options:

model: JobeetJob
type: object
method_for_criteria: doSelectActive

param: { module: job, action: show }
requirements:

Day 6: More with the Model 81

----------------- Brought to you by

Listing
6-26

id: \d+
sf_method: [GET]

The doSelectActive() method will receive the Criteria object built by the route:

// lib/model/JobeetJobPeer.php
class JobeetJobPeer extends BaseJobeetJobPeer
{

static public function doSelectActive(Criteria $criteria)
{

$criteria->add(JobeetJobPeer::EXPIRES_AT, time(),
Criteria::GREATER_THAN);

return self::doSelectOne($criteria);
}

// ...
}

Now, if you try to get an expired job, you will be forwarded to a 404 page.

Link to the Category Page
Now, letÕs add a link to the category page on the homepage and create the category page.

But, wait a minute. the hour is not yet over and we havenÕtworked that much. So, you have
plenty of free time and enough knowledge to implement this all by yourself! LetÕsmake an
exercise of it. Check back tomorrow for our implementation.

Day 6: More with the Model 82

----------------- Brought to you by

Final Thoughts
Do work on an implementation on your local Jobeet project. Please, abuse the online API
documentation 39 and all the free documentation 40 available on the symfony website to help
you out. Tomorrow, we will give you the solution on how to implement this feature.

39. http://www.symfony-project.org/api/1_4/
40. http://www.symfony-project.org/doc/1_4/

Day 6: More with the Model 83

----------------- Brought to you by

Listing
7-1

Listing
7-2

Day 7

Playing with the Category Page

Yesterday, you expanded your knowledge of symfony in a lot of different areas: querying with
Propel, fixtures, routing, debugging, and custom configuration. And we finished with a little
challenge to start today.

We hope you worked on the Jobeet category page as today will then be much more valuable
for you.

Ready? LetÕs talk about a possible implementation.

The Category Route
First, we need to add a route to define a pretty URL for the category page. Add it at the
beginning of the routing file:

apps/frontend/config/routing.yml
category:

url: /category/:slug
class: sfPropelRoute
param: { module: category, action: show }
options: { model: JobeetCategory, type: object }

Whenever you start implementing a new feature, it is a good practice to first think about
the URL and create the associated route . And it is mandatory if you removed the default
routing rules.

A route can use any column from its related object as a parameter. It can also use any other
value if there is a related accessor defined in the object class. Because the slug parameter
has no corresponding column in the category table, we need to add a virtual accessor in
JobeetCategory to make the route works:

// lib/model/JobeetCategory.php
public function getSlug()
{

return Jobeet::slugify($this->getName());
}

Day 7: Playing with the Category Page 84

----------------- Brought to you by

Listing
7-3

Listing
7-4

Listing
7-5

The Category Link
Now, edit the indexSuccess.php template of the job module to add the link to the
category page:

<!-- some HTML code -->

<h1>
<?php echo link_to($category, 'category', $category) ?>

</h1>

<!-- some HTML code -->

</table>

<?php if (($count = $category->countActiveJobs() -
sfConfig::get('app_max_jobs_on_homepage')) > 0): ?>

<div class="more_jobs">
and <?php echo link_to($count, 'category', $category) ?>
more...

</div>
<?php endif; ?>

</div>
<?php endforeach; ?>

</div>

We only add the link if there are more than 10 jobs to display for the current category. The
link contains the number of jobs not displayed. For this template to work, we need to add the
countActiveJobs() method to JobeetCategory :

// lib/model/JobeetCategory.php
public function countActiveJobs()
{

$criteria = new Criteria();
$criteria->add(JobeetJobPeer::CATEGORY_ID, $this->getId());

return JobeetJobPeer::countActiveJobs($criteria);
}

The countActiveJobs() method uses a countActiveJobs() method that does not exist
yet in JobeetJobPeer . Replace the content of the JobeetJobPeer.php file with the
following code:

// lib/model/JobeetJobPeer.php
class JobeetJobPeer extends BaseJobeetJobPeer
{

static public function getActiveJobs(Criteria $criteria = null)
{

return self::doSelect(self::addActiveJobsCriteria($criteria));
}

static public function countActiveJobs(Criteria $criteria = null)
{

return self::doCount(self::addActiveJobsCriteria($criteria));
}

static public function addActiveJobsCriteria(Criteria $criteria = null)

Day 7: Playing with the Category Page 85

----------------- Brought to you by

{
if (is_null($criteria))
{

$criteria = new Criteria();
}

$criteria->add(self::EXPIRES_AT, time(), Criteria::GREATER_THAN);
$criteria->addDescendingOrderByColumn(self::CREATED_AT);

return $criteria;
}

static public function doSelectActive(Criteria $criteria)
{

return self::doSelectOne(self::addActiveJobsCriteria($criteria));
}

}

As you can see for yourself, we have refactored the whole code of JobeetJobPeer to
introduce a new shared addActiveJobsCriteria() method to make the code more DRY
(DonÕt Repeat Yourself).

The first time a piece of code is re-used, copying the code may be sufficient. But if you find
another use for it, you need to refactor all uses to a shared function or a method, as we
have done here.

In the countActiveJobs() method, instead of using doSelect() and then count the
number of results, we have used the much faster doCount() method.

We have changed a lot of files, just for this simple feature. But each time we have added some
code, we have tried to put it in the right layer of the application and we have also tried to
make the code reusable. In the process, we have also refactored some existing code. ThatÕsa
typical workflow when working on a symfony project. In the following screenshot we are
showing 5 jobs to keep it short, you should see 10 (the max_jobs_on_homepage setting):

Day 7: Playing with the Category Page 86

----------------- Brought to you by

http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
http://en.wikipedia.org/wiki/Don%27t_repeat_yourself

Listing
7-6

Listing
7-7

Job Category Module Creation
ItÕs time to create the category module:

$ php symfony generate:module frontend category

If you have created a module, you have probably used the propel:generate-module .
ThatÕs fine but as we wonÕt need 90% of the generated code, I have used the
generate:module which creates an empty module.

Why not add a category action to the job module? We could, but as the main subject of
the category page is a category, it feels more natural to create a dedicated category
module.

When accessing the category page, the category route will have to find the category
associated with the request slug variable. But as the slug is not stored in the database, and
because we cannot deduce the category name from the slug, there is no way to find the
category associated with the slug.

Update the Database
We need to add a slug column for the category table:

config/schema.yml
propel:

jobeet_category:
id: ~

Day 7: Playing with the Category Page 87

----------------- Brought to you by

Listing
7-8

Listing
7-9

Listing
7-10

Listing
7-11

name: { type: varchar(255), required: true }
slug: { type: varchar(255), required: true, index: unique }

Now that slug is a real column, you need to remove the getSlug() method from
JobeetCategory .

Each time the category name changes, we need to compute and change the slug as well.
LetÕs override the setName() method:

// lib/model/JobeetCategory.php
public function setName($name)
{

parent::setName($name);

$this->setSlug(Jobeet::slugify($name));
}

Use the propel:build --all --and-load task to update the database tables, and
repopulate the database with our fixtures:

$ php symfony propel:build --all --and-load --no-confirmation

We have now everything in place to create the executeShow() method. Replace the content
of the category actions file with the following code:

// apps/frontend/modules/category/actions/actions.class.php
class categoryActions extends sfActions
{

public function executeShow(sfWebRequest $request)
{

$this->category = $this->getRoute()->getObject();
}

}

Because we have removed the generated executeIndex() method, you can also remove
the automatically generated indexSuccess.php template (apps/ frontend/ modules/
category/templates/indexSuccess.php).

The last step is to create the showSuccess.php template:

// apps/frontend/modules/category/templates/showSuccess.php
<?php use_stylesheet('jobs.css') ?>

<?php slot('title', sprintf('Jobs in the %s category',
$category->getName())) ?>

<div class="category">
<div class="feed">

Feed
</div>
<h1><?php echo $category ?></h1>

</div>

<table class="jobs">
<?php foreach ($category->getActiveJobs() as $i => $job): ?>

<tr class="<?php echo fmod($i, 2) ? 'even' : 'odd' ?>">
<td class="location">

Day 7: Playing with the Category Page 88

----------------- Brought to you by

Listing
7-12

Listing
7-13

Listing
7-14

<?php echo $job->getLocation() ?>
</td>
<td class="position">

<?php echo link_to($job->getPosition(), 'job_show_user', $job) ?>
</td>
<td class="company">

<?php echo $job->getCompany() ?>
</td>

</tr>
<?php endforeach; ?>

</table>

Partials
Notice that we have copied and pasted the <table> tag that create a list of jobs from the job
indexSuccess.php template. ThatÕsbad. Time to learn a new trick. When you need to reuse
some portion of a template, you need to create a partial . A partial is a snippet of template
code that can be shared among several templates. A partial is just another template that
starts with an underscore (_).

Create the _list.php file:

// apps/frontend/modules/job/templates/_list.php
<table class="jobs">

<?php foreach ($jobs as $i => $job): ?>
<tr class="<?php echo fmod($i, 2) ? 'even' : 'odd' ?>">

<td class="location">
<?php echo $job->getLocation() ?>

</td>
<td class="position">

<?php echo link_to($job->getPosition(), 'job_show_user', $job) ?>
</td>
<td class="company">

<?php echo $job->getCompany() ?>
</td>

</tr>
<?php endforeach; ?>

</table>

You can include a partial by using the include_partial() helper:

<?php include_partial('job/list', array('jobs' => $jobs)) ?>

The first argument of include_partial() is the partial name (made of the module name, a
/ , and the partial name without the leading _). The second argument is an array of variables
to pass to the partial.

Why not use the PHP built-in include() method instead of the include_partial()
helper? The main difference between the two is the built-in cache support of the
include_partial() helper.

Replace the <table> HTML code from both templates with the call to include_partial() :

// in apps/frontend/modules/job/templates/indexSuccess.php
<?php include_partial('job/list', array('jobs' =>
$category->getActiveJobs(sfConfig::get('app_max_jobs_on_homepage')))) ?>

Day 7: Playing with the Category Page 89

----------------- Brought to you by

Listing
7-15

Listing
7-16

Listing
7-17

// in apps/frontend/modules/category/templates/showSuccess.php
<?php include_partial('job/list', array('jobs' =>
$category->getActiveJobs())) ?>

List Pagination
From the second dayÕs requirements:

ÒThe list is paginated with 20 jobs per page.Ó

To paginate a list of Propel objects, symfony provides a dedicated class: sfPropelPager 41.
In the category action, instead of passing the job objects to the showSuccess template, we
pass a pager:

// apps/frontend/modules/category/actions/actions.class.php
public function executeShow(sfWebRequest $request)
{

$this->category = $this->getRoute()->getObject();

$this->pager = new sfPropelPager(
'JobeetJob',
sfConfig::get('app_max_jobs_on_category')

);
$this->pager->setCriteria($this->category->getActiveJobsCriteria());
$this->pager->setPage($request->getParameter('page', 1));
$this->pager->init();

}

The sfRequest::getParameter() method takes a default value as a second argument.
In the action above, if the page request parameter does not exist, then getParameter()
will return 1.

The sfPropelPager constructor takes a model class and the maximum number of items to
return per page. Add the latter value to your configuration file:

apps/frontend/config/app.yml
all:

active_days: 30
max_jobs_on_homepage: 10
max_jobs_on_category: 20

The sfPropelPager::setCriteria() method takes a Criteria object to use when
selecting the items from the database.

Add the getActiveJobsCriteria() method:

// lib/model/JobeetCategory.php
public function getActiveJobsCriteria()
{

$criteria = new Criteria();
$criteria->add(JobeetJobPeer::CATEGORY_ID, $this->getId());

return JobeetJobPeer::addActiveJobsCriteria($criteria);
}

41. http://www.symfony-project.org/api/1_4/sfPropelPager

Day 7: Playing with the Category Page 90

----------------- Brought to you by

Listing
7-18

Listing
7-19

Now that we have defined the getActiveJobsCriteria() method, we can refactor other
JobeetCategory methods to use it:

// lib/model/JobeetCategory.php
public function getActiveJobs($max = 10)
{

$criteria = $this->getActiveJobsCriteria();
$criteria->setLimit($max);

return JobeetJobPeer::doSelect($criteria);
}

public function countActiveJobs()
{

$criteria = $this->getActiveJobsCriteria();

return JobeetJobPeer::doCount($criteria);
}

Finally, letÕs update the template:

<!-- apps/frontend/modules/category/templates/showSuccess.php -->
<?php use_stylesheet('jobs.css') ?>

<?php slot('title', sprintf('Jobs in the %s category',
$category->getName())) ?>

<div class="category">
<div class="feed">

Feed
</div>
<h1><?php echo $category ?></h1>

</div>

<?php include_partial('job/list', array('jobs' => $pager->getResults())) ?>

<?php if ($pager->haveToPaginate()): ?>
<div class="pagination">

<a href="<?php echo url_for('category', $category) ?>?page=1">
<img src="http://www.symfony-project.org/images/first.png"

alt="First page" title="First page" />

<a href="<?php echo url_for('category', $category) ?>?page=<?php echo
$pager->getPreviousPage() ?>">

<img src="http://www.symfony-project.org/images/previous.png"
alt="Previous page" title="Previous page" />

<?php foreach ($pager->getLinks() as $page): ?>
<?php if ($page == $pager->getPage()): ?>

<?php echo $page ?>
<?php else: ?>

<a href="<?php echo url_for('category', $category) ?>?page=<?php
echo $page ?>"><?php echo $page ?>

<?php endif; ?>
<?php endforeach; ?>

Day 7: Playing with the Category Page 91

----------------- Brought to you by

<a href="<?php echo url_for('category', $category) ?>?page=<?php echo
$pager->getNextPage() ?>">

<img src="http://www.symfony-project.org/images/next.png" alt="Next
page" title="Next page" />

<a href="<?php echo url_for('category', $category) ?>?page=<?php echo
$pager->getLastPage() ?>">

<img src="http://www.symfony-project.org/images/last.png" alt="Last
page" title="Last page" />

</div>

<?php endif; ?>

<div class="pagination_desc">
<?php echo count($pager) ?> jobs in this category

<?php if ($pager->haveToPaginate()): ?>
- page <?php echo $pager->getPage() ?>/<?php echo

$pager->getLastPage() ?>
<?php endif; ?>

</div>

Most of this code deals with the links to other pages. Here are the list of sfPropelPager
methods used in this template:

¥ getResults() : Returns an array of Propel objects for the current page
¥ getNbResults() : Returns the total number of results
¥ haveToPaginate() : Returns true if there is more than one page
¥ getLinks() : Returns a list of page links to display
¥ getPage() : Returns the current page number
¥ getPreviousPage() : Returns the previous page number
¥ getNextPage() : Returns the next page number
¥ getLastPage() : Returns the last page number

As sfPropelPager also implements the Iterator and Countable interfaces, you can use
count() function to get the number of results instead of the getNbResults() method.

Day 7: Playing with the Category Page 92

----------------- Brought to you by

Final Thoughts
If you worked on your own implementation in day 6 and feel that you didnÕtlearn much here,
it means that you are getting used to the symfony philosophy. The process to add a new
feature to a symfony website is always the same: think about the URLs, create some actions,
update the model, and write some templates. And, if you can apply some good development
practices to the mix, you will become a symfony master very fast.

Tomorrow will be the start of a new week for Jobeet. To celebrate, we will talk about a brand
new topic: automated tests.

Day 7: Playing with the Category Page 93

----------------- Brought to you by

Day 8

The Unit Tests

During the last two days, we reviewed all the features learned during the first five days of the
Practical symfony book to customize Jobeet features and add new ones. In the process, we
have also touched on other more advanced symfony features.

Today, we will start talking about something completely different: automated tests . As the
topic is quite large, it will take us two full days to cover everything.

Tests in symfony
There are two different kinds of automated tests in symfony: unit tests|Unit Testing and
functional tests .

Unit tests verify that each method and function is working properly. Each test must be as
independent as possible from the others.

On the other hand, functional tests verify that the resulting application behaves correctly as a
whole.

All tests in symfony are located under the test/ directory of the project. It contains two sub-
directories, one for unit tests (test/ unit/) and one for functional tests (test/
functional/).

Unit tests will be covered today, whereas tomorrow will be dedicated to functional tests.

Unit Tests
Writing unit tests is perhaps one of the hardest web development best practices to put into
action. As web developers are not really used to testing their work, a lot of questions arise:
Do I have to write tests before implementing a feature? What do I need to test? Do my tests
need to cover every single edge case|Edge Cases? How can I be sure that everything is well
tested? But usually, the first question is much more basic: Where to start?

Even if we strongly advocate testing, the symfony approach is pragmatic: itÕsalways better to
have some tests than no test at all. Do you already have a lot of code without any test? No
problem. You donÕtneed to have a full test suite to benefit from the advantages of having
tests. Start by adding tests whenever you find a bug in your code. Over time, your code will
become better, the code coverage|Code Coverage will rise, and you will become more
confident about it. By starting with a pragmatic approach, you will feel more comfortable with
tests over time. The next step is to write tests for new features. In no time, you will become a
test addict.

The problem with most testing libraries is their steep learning curve. ThatÕswhy symfony
provides a very simple testing library, lime , to make writing test insanely easy.

Day 8: The Unit Tests 94

----------------- Brought to you by

Listing
8-1

Even if this tutorial describes the lime built-in library extensively, you can use any testing
library, like the excellent PHPUnit 42 library.

The lime Testing Framework
All unit tests written with the lime framework start with the same code:

require_once dirname(__FILE__).'/../bootstrap/unit.php';

$t = new lime_test(1);

First, the unit.php bootstrap file is included to initialize a few things. Then, a new
lime_test object is created and the number of tests planned to be launched is passed as an
argument.

The plan allows lime to output an error message in case too few tests are run (for instance
when a test generates a PHP fatal error).

Testing works by calling a method or a function with a set of predefined inputs and then
comparing the results with the expected output. This comparison determines whether a test
passes or fails.

To ease the comparison, the lime_test object provides several methods:

Method Description

ok($test) Tests a condition and passes if it is true

is($value1, $value2) Compares two values and passes if they are

equal (==)

isnt($value1, $value2) Compares two values and passes if they are

not equal

like($string, $regexp) Tests a string against a regular expression

unlike($string, $regexp) Checks that a string doesnÕt match a regular

expression

is_deeply($array1, $array2) Checks that two arrays have the same values

You may wonder why lime defines so many test methods, as all tests can be written just by
using the ok() method. The benefit of alternative methods lies in much more explicit error
messages in case of a failed test and in improved readability of the tests.

The lime_test object also provides other convenient testing methods:

Method Description

fail() Always failsÑuseful for testing exceptions

pass() Always passesÑuseful for testing exceptions

skip($msg, $nb_tests) Counts as $nb_tests testsÑuseful for conditional

42. http://www.phpunit.de/

Day 8: The Unit Tests 95

----------------- Brought to you by

Listing
8-2

Listing
8-3

Listing
8-4

Method Description

tests

todo() Counts as a testÑuseful for tests yet to be

written

Finally, the comment($msg) method outputs a comment but runs no test.

Running Unit Tests
All unit tests are stored under the test/ unit/ directory. By convention, tests are named
after the class they test and suffixed by Test . Although you can organize the files under the
test/ unit/ directory anyway you like, we recommend you replicate the directory structure
of the lib/ directory.

To illustrate unit testing, we will test the Jobeet class.

Create a test/unit/JobeetTest.php file and copy the following code inside:

// test/unit/JobeetTest.php
require_once dirname(__FILE__).'/../bootstrap/unit.php';

$t = new lime_test(1);
$t->pass('This test always passes.');

To launch the tests, you can execute the file directly:

$ php test/unit/JobeetTest.php

Or use the test:unit task:

$ php symfony test:unit Jobeet

Windows command line unfortunately cannot highlight test results in red or green color.
But if you use Cygwin, you can force symfony to use colors by passing the --color option
to the task.

Testing slugify

LetÕs start our trip to the wonderful world of unit testing by writing tests for the
Jobeet::slugify() method.

We created the ~slug|Slug~ify() method during day 5 to clean up a string so that it can
be safely included in a URL. The conversion consists in some basic transformations like
converting all non-ASCII characters to a dash (-) or converting the string to lowercase:

Day 8: The Unit Tests 96

----------------- Brought to you by

Listing
8-5

Listing
8-6

Input Output

Sensio Labs sensio-labs

Paris, France paris-france

Replace the content of the test file with the following code:

// test/unit/JobeetTest.php
require_once dirname(__FILE__).'/../bootstrap/unit.php';

$t = new lime_test(6);

$t->is(Jobeet::slugify('Sensio'), 'sensio');
$t->is(Jobeet::slugify('sensio labs'), 'sensio-labs');
$t->is(Jobeet::slugify('sensio labs'), 'sensio-labs');
$t->is(Jobeet::slugify('paris,france'), 'paris-france');
$t->is(Jobeet::slugify(' sensio'), 'sensio');
$t->is(Jobeet::slugify('sensio '), 'sensio');

If you take a closer look at the tests we have written, you will notice that each line only tests
one thing. ThatÕssomething you need to keep in mind when writing unit tests. Test one thing
at a time.

You can now execute the test file. If all tests pass, as we expect them to, you will enjoy the
Ògreen barÓ.If not, the infamous Òred barÓwill alert you that some tests do not pass and that
you need to fix them.

If a test fails, the output will give you some information about why it failed; but if you have
hundreds of tests in a file, it can be difficult to quickly identify the behavior that fails.

All lime test methods take a string as their last argument that serves as the description for
the test. ItÕsvery convenient as it forces you to describe what you are really testing. It can
also serve as a form of documentation for a methodÕsexpected behavior. LetÕsadd some
messages to the slugify test file:

require_once dirname(__FILE__).'/../bootstrap/unit.php';

$t = new lime_test(6);

$t->comment('::slugify()');
$t->is(Jobeet::slugify('Sensio'), 'sensio',

'::slugify() converts all characters to lower case');
$t->is(Jobeet::slugify('sensio labs'), 'sensio-labs',

'::slugify() replaces a white space by a -');
$t->is(Jobeet::slugify('sensio labs'), 'sensio-labs',

'::slugify() replaces several white spaces by a single -');
$t->is(Jobeet::slugify(' sensio'), 'sensio',

'::slugify() removes - at the beginning of a string');

Day 8: The Unit Tests 97

----------------- Brought to you by

Listing
8-7

Listing
8-8

Listing
8-9

$t->is(Jobeet::slugify('sensio '), 'sensio',
'::slugify() removes - at the end of a string');

$t->is(Jobeet::slugify('paris,france'), 'paris-france',
'::slugify() replaces non-ASCII characters by a -');

The test description string is also a valuable tool when trying to figure out what to test. You
can see a pattern in the test strings: they are sentences describing how the method must
behave and they always start with the method name to test.

Code Coverage

When you write tests, it is easy to forget a portion of the code.

To help you check that all your code is well tested, symfony provides the test:coverage
task. Pass this task a test file or directory and a lib file or directory as arguments and it will
tell you the code coverage of your code:

$ php symfony test:coverage test/unit/JobeetTest.php lib/Jobeet.class.php

If you want to know which lines are not covered by your tests, pass the --detailed option:

$ php symfony test:coverage --detailed test/unit/JobeetTest.php lib/
Jobeet.class.php

Keep in mind that when the task indicates that your code is fully unit tested, it just means
that each line has been executed, not that all the edge cases have been tested.

As the test:coverage relies on XDebug to collect its information, you need to install it
and enable it first.

Adding Tests for new Features
The slug for an empty string is an empty string. You can test it, it will work. But an empty
string in a URL is not that a great idea. LetÕschange the slugify() method so that it
returns the Òn-aÓ string in case of an empty string.

You can write the test first, then update the method, or the other way around. It is really a
matter of taste but writing the test first gives you the confidence that your code actually
implements what you planned:

$t->is(Jobeet::slugify(''), 'n-a',
'::slugify() converts the empty string to n-a');

This development methodology, where you first write tests then implement features, is known
as Test Driven Development (TDD)43.

Day 8: The Unit Tests 98

----------------- Brought to you by

Listing
8-10

Listing
8-11

If you launch the tests now, you must have a red bar. If not, it means that the feature is
already implemented or that your test does not test what it is supposed to test.

Now, edit the Jobeet class and add the following condition at the beginning:

// lib/Jobeet.class.php
static public function slugify($text)
{

if (empty($text))
{

return 'n-a';
}

// ...
}

The test must now pass as expected, and you can enjoy the green bar, but only if you have
remembered to update the test plan. If not, you will have a message that says you planned six
tests and ran one extra. Having the planned test count up to date is important, as it you will
keep you informed if the test script dies early on.

Adding Tests because of a Bug
LetÕssay that time has passed and one of your users reports a weird bug: some job links point
to a 404 error page. After some investigation, you find that for some reason, these jobs have
an empty company, position, or location slug.

How is it possible?

You look through the records in the database and the columns are definitely not empty. You
think about it for a while, and bingo, you find the cause. When a string only contains non-
ASCII characters, the slugify() method converts it to an empty string. So happy to have
found the cause, you open the Jobeet class and fix the problem right away. ThatÕsa bad
idea. First, letÕs add a test:

$t->is(Jobeet::slugify(' - '), 'n-a',
'::slugify() converts a string that only contains non-ASCII characters

to n-a');

43. http://en.wikipedia.org/wiki/Test_Driven_Development

Day 8: The Unit Tests 99

----------------- Brought to you by

Listing
8-12

After checking that the test does not pass, edit the Jobeet class and move the empty string
check to the end of the method:

static public function slugify($text)
{

// ...

if (empty($text))
{

return 'n-a';
}

return $text;
}

The new test now passes, as do all the other ones. The slugify() had a bug despite our
100% coverage.

You cannot think about all edge cases when writing tests, and thatÕs fine. But when you
discover one, you need to write a test for it before fixing your code. It also means that your
code will get better over time, which is always a good thing.

Day 8: The Unit Tests 100

----------------- Brought to you by

Listing
8-13

Listing
8-14

Listing
8-15

Towards a better slugify Method

You probably know that symfony has been created by French people, so letÕsadd a test with
a French word that contains an ÒaccentÓ:

$t->is(Jobeet::slugify('DŽveloppeur Web'), 'developpeur-web',
'::slugify() removes accents');

The test must fail. Instead of replacing Ž by e, the slugify() method has replaced it by a
dash (-). ThatÕsa tough problem, called transliteration . Hopefully, if you have ÒiconvÓ
installed, it will do the job for us. Replace the code of the slugify method with the
following:

// code derived from http://php.vrana.cz/vytvoreni-pratelskeho-url.php
static public function slugify($text)
{

// replace non letter or digits by -
$text = preg_replace('#[^\\pL\d]+#u', '-', $text);

// trim
$text = trim($text, '-');

// transliterate
if (function_exists('iconv'))
{

$text = iconv('utf-8', 'us-ascii//TRANSLIT', $text);
}

// lowercase
$text = strtolower($text);

// remove unwanted characters
$text = preg_replace('#[^-\w]+#', '', $text);

if (empty($text))
{

return 'n-a';
}

return $text;
}

Remember to save all your PHP files with the UTF-8 encoding, as this is the default symfony
encoding, and the one used by ÒiconvÓ to do the transliteration.

Also change the test file to run the test only if ÒiconvÓ is available:

if (function_exists('iconv'))
{

$t->is(Jobeet::slugify('DŽveloppeur Web'), 'developpeur-web',
'::slugify() removes accents');
}
else
{

$t->skip('::slugify() removes accents - iconv not installed');
}

Day 8: The Unit Tests 101

----------------- Brought to you by

Listing
8-16

Listing
8-17

Propel Unit Tests

Database Configuration

Unit testing a Propel model class is a bit more complex as it requires a database connection.
You already have the one you use for your development, but it is a good habit to create a
dedicated database for tests.

At the beginning of this book, we introduced the environment s as a way to vary an
applicationÕssettings. By default, all symfony tests are run in the test environment, so letÕs
configure a different database for the test environment:

$ php symfony configure:database --env=test
"mysql:host=localhost;dbname=jobeet_test" root mYsEcret

The env option tells the task that the database configuration is only for the test
environment. When we used this task during day 3, we did not pass any env option, so the
configuration was applied to all environments.

If you are curious, open the config/ databases.yml configuration file to see how
symfony makes it easy to change the configuration depending on the environment.

Now that we have configured the database, we can bootstrap it by using the
propel:insert-sql task:

$ mysqladmin -uroot -pmYsEcret create jobeet_test
$ php symfony propel:insert-sql --env=test

Day 8: The Unit Tests 102

----------------- Brought to you by

Listing
8-18

Listing
8-19

Configuration Principles in symfony

During day 4, we saw that settings coming from configuration files can be defined at
different levels.

These setting s can also be environment dependent. This is true for most configuration files
we have used until now: databases.yml , app.yml , view.yml , and settings.yml . In all
those files, the main key is the environment, the all key indicating its settings are for all
environments:

config/databases.yml
dev:

propel:
class: sfPropelDatabase
param:

classname: DebugPDO

test:
propel:

class: sfPropelDatabase
param:

classname: DebugPDO
dsn: 'mysql:host=localhost;dbname=jobeet_test'

all:
propel:

class: sfPropelDatabase
param:

dsn: 'mysql:host=localhost;dbname=jobeet'
username: root
password: null

Test Data

Now that we have a dedicated database for our tests, we need a way to load some test data.
During day 3, you learned to use the propel:data-load task, but for tests, we need to
reload the data each time we run them to put the database in a known state.

The propel:data-load task internally uses the sfPropelData 44 class to load the data:

$loader = new sfPropelData();
$loader->loadData(sfConfig::get('sf_test_dir').'/fixtures');

The sfConfig object can be used to get the full path of a project sub-directory. Using it
allows for the default directory structure to be customized.

The loadData() method takes a directory or a file as its first argument. It can also take an
array of directories and/or files.

We have already created some initial data in the data/ fixtures/ directory. For tests, we
will put the fixture s into the test/ fixtures/ directory. These fixtures will be used for
Propel unit and functional tests.

For now, copy the files from data/fixtures/ to the test/fixtures/ directory.

44. http://www.symfony-project.org/api/1_4/sfPropelData

Day 8: The Unit Tests 103

----------------- Brought to you by

Listing
8-20

Listing
8-21

Listing
8-22

Listing
8-23

Listing
8-24

Listing
8-25

Testing JobeetJob

LetÕs create some unit tests for the JobeetJob model class.

As all our Propel unit tests will begin with the same code, create a Propel.php file in the
bootstrap/ test directory with the following code:

// test/bootstrap/Propel.php
include(dirname(__FILE__).'/unit.php');

$configuration =
ProjectConfiguration::getApplicationConfiguration(
'frontend', 'test', true);

new sfDatabaseManager($configuration);

$loader = new sfPropelData();
$loader->loadData(sfConfig::get('sf_test_dir').'/fixtures');

The script is pretty self-explanatory:

¥ As for the front controllers, we initialize a configuration object for the test
environment:

$configuration =
ProjectConfiguration::getApplicationConfiguration(
'frontend', 'test', true);

¥ We create a database manager. It initializes the Propel connection by loading the
databases.yml configuration file.

new sfDatabaseManager($configuration);

¥ We load our test data by using sfPropelData :

$loader = new sfPropelData();
$loader->loadData(sfConfig::get('sf_test_dir').'/fixtures');

Propel connects to the database only if it has some SQL statements to execute.

Now that everything is in place, we can start testing the JobeetJob class.

First, we need to create the JobeetJobTest.php file in test/unit/model :

// test/unit/model/JobeetJobTest.php
include(dirname(__FILE__).'/../../bootstrap/Propel.php');

$t = new lime_test(1);

Then, letÕs start by adding a test for the getCompanySlug() method:

$t->comment('->getCompanySlug()');
$job = JobeetJobPeer::doSelectOne(new Criteria());
$t->is($job->getCompanySlug(), Jobeet::slugify($job->getCompany()),
'->getCompanySlug() return the slug for the company');

Day 8: The Unit Tests 104

----------------- Brought to you by

Listing
8-26

Notice that we only test the getCompanySlug() method and not if the slug is correct or not,
as we are already testing this elsewhere.

Writing tests for the save() method is slightly more complex:

$t->comment('->save()');
$job = create_job();
$job->save();
$expiresAt = date('Y-m-d', time() + 86400

* sfConfig::get('app_active_days'));
$t->is($job->getExpiresAt('Y-m-d'), $expiresAt, '->save() updates
expires_at if not set');

$job = create_job(array('expires_at' => '2008-08-08'));
$job->save();
$t->is($job->getExpiresAt('Y-m-d'), '2008-08-08', '->save() does not
update expires_at if set');

function create_job($defaults = array())
{

static $category = null;

if (is_null($category))
{

$category = JobeetCategoryPeer::doSelectOne(new Criteria());
}

$job = new JobeetJob();
$job->fromArray(array_merge(array(

'category_id' => $category->getId(),
'company' => 'Sensio Labs',
'position' => 'Senior Tester',
'location' => 'Paris, France',
'description' => 'Testing is fun',
'how_to_apply' => 'Send e-Mail',
'email' => 'job@example.com',
'token' => rand(1111, 9999),
'is_activated' => true,

), $defaults), BasePeer::TYPE_FIELDNAME);

return $job;
}

Each time you add tests, donÕtforget to update the number of expected tests (the plan) in
the lime_test constructor method. For the JobeetJobTest file, you need to change it
from 1 to 3.

Test other Propel Classes

You can now add tests for all other Propel classes. As you are now getting used to the process
of writing unit tests, it should be quite easy.

Unit Tests Harness
The test:unit task can also be used to launch all unit tests for a project:

Day 8: The Unit Tests 105

----------------- Brought to you by

Listing
8-27

$ php symfony test:unit

The task outputs whether each test file passes or fails:

If the test:unit task returns a Òdubious statusÓfor a file, it indicates that the script died
before end. Running the test file alone will give you the exact error message.

Final Thoughts
Even if testing an application is quite important, I know that some of you might have been
tempted to just skip this day. IÕm glad you have not.

Sure, embracing symfony is about learning all the great features the framework provides, but
itÕsalso about its philosophy of development and the best practices it advocates. And testing
is one of them. Sooner or later, unit tests will save the day for you. They give you a solid
confidence about your code and the freedom to refactor it without fear. Unit tests are a safe
guard that will alert you if you break something. The symfony framework itself has more than
9000 tests.

Tomorrow, we will write some functional tests for the job and category modules. Until
then, take some time to write more unit tests for the Jobeet model classes.

Day 8: The Unit Tests 106

----------------- Brought to you by

Day 9

The Functional Tests

Yesterday, we saw how to unit test our Jobeet classes using the lime testing library packaged
with symfony. Today, we will write functional tests for the features we have already
implemented in the job and category modules.

Functional Tests
Functional tests are a great tool to test your application from end to end: from the request
made by a browser to the response sent by the server. They test all the layers of an
application: the routing, the model, the actions, and the templates. They are very similar to
what you probably already do manually: each time you add or modify an action, you need to
go to the browser and check that everything works as expected by clicking on links and
checking elements on the rendered page. In other words, you run a scenario corresponding to
the use case you have just implemented.

As the process is manual, it is tedious and error prone. Each time you change something in
your code, you must step through all the scenarios to ensure that you did not break
something. ThatÕs insane. Functional tests in symfony provide a way to easily describe
scenarios. Each scenario can then be played automatically over and over again by simulating
the experience a user has in a browser. Like unit tests, they give you the confidence to code
in peace.

The functional test framework does not replace tools like ÒSelenium45Ó. Selenium runs
directly in the browser to automate testing across many platforms and browsers and as
such, it is able to test your applicationÕs JavaScript.

The sfBrowser class
In symfony, functional tests are run through a special browser , implemented by the
sfBrowser 46 class. It acts as a browser tailored for your application and directly connected
to it, without the need for a web server. It gives you access to all symfony objects before and
after each request, giving you the opportunity to introspect them and do the checks you want
programatically.

sfBrowser provides methods that simulates navigation done in a classic browser:

45. http://selenium.seleniumhq.org/
46. http://www.symfony-project.org/api/1_4/sfBrowser

Day 9: The Functional Tests 107

----------------- Brought to you by

Listing
9-1

Method Description

get() Gets a URL

post() Posts to a URL

call() Calls a URL (used for PUTand DELETEmethods)

back() Goes back one page in the history

forward() Goes forward one page in the history

reload() Reloads the current page

click() Clicks on a link or a button

select() selects a radiobutton or checkbox

deselect() deselects a radiobutton or checkbox

restart() Restarts the browser

Here are some usage examples of the sfBrowser methods:

$browser = new sfBrowser();

$browser->
get('/')->
click('Design')->
get('/category/programming?page=2')->
get('/category/programming', array('page' => 2))->
post('search', array('keywords' => 'php'))

;

sfBrowser contains additional methods to configure the browser behavior:

Method Description

setHttpHeader() Sets an HTTP header

setAuth() Sets the basic authentication credentials

setCookie() Set a cookie

removeCookie() Removes a cookie

clearCookies() Clears all current cookies

followRedirect() Follows a redirect

The sfTestFunctional class
We have a browser, but we need a way to introspect the symfony objects to do the actual
testing. It can be done with lime and some sfBrowser methods like getResponse() and
getRequest() but symfony provides a better way.

The test methods are provided by another class, sfTestFunctional 47 that takes a
sfBrowser instance in its constructor. The sfTestFunctional class delegates the tests to
tester objects. Several testers are bundled with symfony, and you can also create your own.

As we saw in day 8, functional tests are stored under the test/ functional/ directory. For
Jobeet, tests are to be found in the test/ functional/ frontend/ sub-directory as each
application has its own subdirectory. This directory already contains two files:

47. http://www.symfony-project.org/api/1_4/sfTestFunctional

Day 9: The Functional Tests 108

----------------- Brought to you by

	Practical symfony
	symfony 1.3 & 1.4 | Propel

	Table of Contents
	About the Author
	About Sensio Labs
	Which symfony Version?
	Starting up the Project
	Introduction
	This Book is different
	What for Today?
	Prerequisites
	Third-Party Software
	Command Line Interface
	PHP Configuration

	Symfony Installation
	Initializing the Project Directory
	Choosing the Symfony Version
	Choosing the Symfony Installation Location
	Installing Symfony
	Installing from an Archive
	Installing from Subversion (recommended)
	Installation Verification

	Project Setup
	Project Creation
	Application Creation
	Directory Structure Rights

	Web Server Configuration: The ugly Way
	Web Server Configuration: The secure Way
	Web Server Configuration
	Test the New Configuration

	The Environments
	Subversion
	Final Thoughts

	The Project
	The Project Pitch
	The Project User Stories
	Story F1: On the homepage, the user sees the latest active jobs
	Story F2: A user can ask for all the jobs in a given category
	Story F3: A user refines the list with some keywords
	Story F4: A user clicks on a job to see more detailed information
	Story F5: A user posts a job
	Story F6: A user applies to become an affiliate
	Story F7: An affiliate retrieves the current active job list
	Story B1: An admin configures the website
	Story B2: An admin manages the jobs
	Story B3: An admin manages the affiliates

	Final Thoughts

	The Data Model
	The Relational Model
	The Schema
	The Database
	The ORM
	The Initial Data
	See it in Action in the Browser
	Final Thoughts

	The Controller and the View
	The MVC Architecture
	The Layout
	The Stylesheets, Images, and JavaScripts
	The Job Homepage
	The Action
	The Template

	The Job Page Template
	Slots
	The Job Page Action
	The Request and the Response
	The Request
	The Response

	Final Thoughts

	The Routing
	URLs
	Routing Configuration
	Route Customizations
	Requirements
	Route Class
	Object Route Class
	Routing in Actions and Templates
	Collection Route Class
	Route Debugging
	Default Routes
	Final Thoughts

	More with the Model
	The Propel Criteria Object
	Debugging Propel generated SQL
	Object Serialization
	More with Fixtures
	Custom Configuration
	Refactoring
	Categories on the Homepage
	Limit the Results
	Dynamic Fixtures
	Secure the Job Page
	Link to the Category Page
	Final Thoughts

	Playing with the Category Page
	The Category Route
	The Category Link
	Job Category Module Creation
	Update the Database
	Partials
	List Pagination
	Final Thoughts

	The Unit Tests
	Tests in symfony
	Unit Tests
	The lime Testing Framework
	Running Unit Tests
	Testing slugify
	Adding Tests for new Features
	Adding Tests because of a Bug
	Propel Unit Tests
	Database Configuration
	Test Data
	Testing JobeetJob
	Test other Propel Classes

	Unit Tests Harness
	Final Thoughts

	The Functional Tests
	Functional Tests
	The sfBrowser class
	The sfTestFunctional class
	The Request Tester
	The Response Tester

	Running Functional Tests
	Test Data
	Writing Functional Tests
	Expired jobs are not listed
	Only n jobs are listed for a category
	A category has a link to the category page only if too many jobs
	Jobs are sorted by date
	Each job on the homepage is clickable

	Learn by the Example
	Debugging Functional Tests
	Functional Tests Harness
	Tests Harness
	Final Thoughts

	The Forms
	The Form Framework
	Forms
	Propel Forms
	Customizing the Job Form
	The Form Template
	The Form Action
	Protecting the Job Form with a Token

	The Preview Page
	Job Activation and Publication
	Final Thoughts

	Testing your Forms
	Submitting a Form
	The Form Tester
	Redirection Test
	The Propel Tester
	Testing for Errors
	Forcing the HTTP Method of a link
	Tests as a SafeGuard
	Back to the Future in a Test
	Forms Security
	Form Serialization Magic!
	Built-in Security Features
	XSS and CSRF Protection

	Maintenance Tasks
	Final Thoughts

	The Admin Generator
	Backend Creation
	Backend Modules
	Backend Look and Feel
	The symfony Cache
	Backend Configuration
	Title Configuration
	Fields Configuration
	List View Configuration
	display
	layout
	“Virtual” columns
	sort
	max_per_page
	batch_actions
	object_actions
	actions
	peer_method

	Form Views Configuration
	display
	“Virtual” columns
	class

	Filters Configuration
	Actions Customization
	Templates Customization
	Final Configuration
	Final Thoughts

	The User
	User Flashes
	User Attributes
	getAttribute(), setAttribute()
	The myUser class
	sfParameterHolder

	Application Security
	Authentication
	Authorization

	Plugins
	Backend Security
	User Testing
	Final Thoughts

	Feeds
	Formats
	Feeds
	Latest Jobs Feed
	Latest Jobs in a Category Feed

	Final Thoughts

	Web Services
	Affiliates
	The Fixtures
	The Job Web Service
	The Action
	The xml Format
	The json Format
	The yaml Format

	Web Service Tests
	The Affiliate Application Form
	Routing
	Bootstrapping
	Templates
	Actions
	Tests

	The Affiliate Backend
	Final Thoughts

	The Mailer
	Sending simple Emails
	Configuration
	Factories
	Delivery Strategy
	Mail Transport

	Testing Emails
	Final Thoughts

	Search
	The Technology
	Installing and Configuring the Zend Framework
	Indexing
	The save() method
	Propel Transactions
	delete()
	Mass delete

	Searching
	Unit Tests
	Tasks
	Final Thoughts

	AJAX
	Installing jQuery
	Including jQuery
	Adding Behaviors
	User Feedback
	AJAX in an Action
	Testing AJAX
	Final Thoughts

	Internationalization and Localization
	User
	The User Culture
	The Preferred Culture

	Culture in the URL
	Culture Testing
	Language Switching
	Internationalization
	Languages, Charset, and Encoding
	Templates
	i18n:extract
	Translations with Arguments
	Forms
	Propel Objects
	Admin Generator
	Tests

	Localization
	Templates
	Forms (I18n)

	Final Thoughts

	The Plugins
	Plugins
	A symfony Plugin
	Private Plugins
	Public Plugins
	A Different Way to Organize Code

	Plugin File Structure
	The Jobeet Plugin
	The Model
	The Controllers and the Views
	The Tasks
	The i18n Files
	The Routing
	The Assets
	The User
	The Default Structure vs. the Plugin Architecture

	Using Plugins
	Contributing a Plugin
	Packaging a Plugin
	Hosting a Plugin on the symfony Website

	Final Thoughts

	The Cache
	Creating a new Environment
	Cache Configuration
	Page Cache
	Clearing the Cache
	Action Cache
	Partial and Component Cache
	Forms in Cache
	Removing the Cache
	Testing the Cache
	Final Thoughts

	The Deployment
	Preparing the Production Server
	Server Configuration
	PHP Accelerator

	The symfony Libraries
	Embedding symfony
	Upgrading symfony

	Tweaking the Configuration
	Database Configuration
	Assets
	Customizing Error Pages

	Customizing the Directory Structure
	The Web Root Directory
	The Cache and Log Directory

	Customizing symfony core Objects (aka factories)
	Cookie Name
	Session Storage
	Session Timeout
	Logging

	Deploying
	What to deploy?
	Deploying Strategies

	Final Thoughts

	Another Look at symfony
	What is symfony?
	The Model
	The View
	The Controller
	Configuration
	Debugging
	Main symfony Objects
	Security
	Forms
	Internationalization and Localization
	Tests
	Plugins
	Tasks
	See you soon
	Learning by Practicing
	The community

	Appendices
	License
	Attribution-Share Alike 3.0 Unported License

